【MASM汇编语言快速入门】8086MASM汇编深入理解指令对标志位的影响

8086MASM汇编深入理解指令对标志位的影响

文章目录

  • 8086MASM汇编深入理解指令对标志位的影响
    • 0. 指令对标志位影响
      • 1. 指令对标志位影响速查表
      • 2. flags标志寄存器: 标志位含义解读
      • `flags`
        • 1. 状态标志cf, pf, af, zf, sf, of
        • 2. 控制标志df, if, tf
    • 详解:
    • 1. 传送指令
    • 2. 算术指令
    • 3. 逻辑/位指令
    • 4. 移位指令
    • 5. 分支指令: 标志位的应用
      • 1. cmp
      • 2. jmp label/r16/m16
      • 3. jcc label
        • (1) 功能:满足条件"cc"则跳转到label,否则执行下一条指令
        • (2)分类掌握
          • 1. 检查单个标志位
          • 2. 大小关系
          • 答疑:

0. 指令对标志位影响

1. 指令对标志位影响速查表

CFOFSFZFPFAF
传送指令mov, xchg, lea,push, pop, in, outxxxxxx
算术指令add, adc, sub, sbb, cmp, nego
(当成无符号数运算有进位借位则CF=1)
o
(当成有符号数运算溢出则OF=1)
oooo(低8位产生进位/高8位产生借位则AF=1)
算术指令inc, decxoooox
逻辑指令and, test, or, xor置cf=0置of=0ooox
逻辑指令notxxxxxx
移位指令shl=sal, shr, saro
(无论左移右移算数逻辑移出了1就CF=1)
o
(移位后最高位改变则OF=1)
ooox
循环移位rol, ror, rcl, rcro
(无论左移右移算数逻辑移出了1就CF=1)
o
(移位后最高位改变则OF=1)
xxxx

2. flags标志寄存器: 标志位含义解读

flags

flags = [x, x, x, x, of(11), df(10), if(9), tf(8), sf(7), zf(6), x, af(4), x, pf(2), x, cf(0)]

1. 状态标志cf, pf, af, zf, sf, of
标志位功能和取值
cf进位标志(Carry Flag)
pf奇偶标志(Parity Flag)。若PF=1,表示操作结果中“1”的个数为偶数,否则PF=0。这个标志位主要用于检查数据传送过程中的错误, 和方便软件实现奇偶校验。
af辅助进位标志(Auxiliary Carry Flag)也叫半进位标志, 若AF=1表示字节运算产生低半字节向高半字节的进位或借位,否则AF=0. 主要用于BCD码运算的十进制调整。
zf全零标志(Zero Flag)。若ZF=1,表示操作结果全为零
sf符号标志(Sign Flag)。若SF=1,表示符号数运算后的结果为负数
of溢出标志OF=1,表示当进行算术运算时,结果超过了最大范围
2. 控制标志df, if, tf
标志位功能和取值
df方向标志, 用于串指令, 若DF=1, 表示执行字符串操作时按着从高地址向低地址方向进行(si, di自减);否则DF=0。DF位可由指令控制。
if中断标志, 用于是否允许响应可屏蔽中断
tf

详解:

1. 传送指令

传送类指令都不影响标志位

操作数形式功能对标志的影响
movmov dest, src(不限制宽度)
限制:
1. seg间传送
2. mem间传送
3. 立即数传给seg
4. cs出现
传送不影响任何
xchgxchg dest, src(不限制宽度)
限制:
1. seg间传送,
2. mem间传送,
3. 立即数出现
交换两操作数不影响任何
lealea r16, mem获取有效地址不影响任何
pushpush r16/m16/i16/seg进栈不影响任何
poppop r16/m16/seg出栈不影响任何

2. 算术指令

都不允许

  1. op imm, imm
  2. op mem, mem
  3. op seg, xxx

CF, OF深入理解

  1. CF: 当成无符号数时, 加有进位则CF=1, 被减数小于减数(注意是当成无符号数时有借位)CF=1

    举例:

    真值:1 - (-2) = 3,

    补码: 0x01H - 0xFEH:

    标志: OF = 0(真值为3没溢出), CF = 1(解释为无符号数时0x01H小于0xFEH, 产生借位)

  2. OF: 用双符号位判断, 或者用真值有没有超过表示范围判断

操作数形式功能对标志影响
addadd dest, srcdest << dest + src全影响
adcadc dest, srcdest << dest + src + cf全影响
incinc r/mr/m << r/m + 1除cf 全影响
subsub dest, srcdest << dest - src全影响
sbbsbb dest, srcdest << dest - src - cf全影响
decdec r/mr/m << r/m - 1除cf 全影响
negneg r/mr/m << 0 - r/m全影响(等于用0减)
cmpcmp dest, srcdest - src全影响
  • MUL IMUL

    MUL指令若高一半不为0则of=cf=1

    IMUL指令若高一半是低一半的符号扩展则of=cf=1

    乘法指令只影响OF位和CF位,对其他位没定义

  • DIV IDIV

    除法指令对6个标志位均没定义

3. 逻辑/位指令

都不允许

  1. op imm, imm
  2. op mem, mem
  3. op seg, xxx
操作数形式功能对标志的影响
andand dest, src逻辑与置cf=of=0, sf, zf, pf, 对af无定义
testtest dest, src逻辑与(但不改变寄存器值)置cf=of=0, sf, zf, pf, 对af无定义
oror dest, src逻辑或置cf=of=0, sf, zf, pf, 对af无定义
xorxor dest, src异或置cf=of=0, sf, zf, pf, 对af无定义
notnot r/m取反不影响任何

4. 移位指令

  1. 移出1则cf=1
  2. 最高位改变则of=1(有实际意义)
  3. 对af无定义

sf, zf, pf循环移位不影响, 其他移位影响

功能对标志的影响
shl = sal(没有任何区别)为什么算术左移和逻辑左移是一样的, 因为无论是有符号还是无符号数, 左移进来的一定是0(无论从标志含义还是结果角度都是一样的,这正是补码设计的精妙之处)移出1则cf=1
最高位改变则of=1(有实际意义)
sf,pf,zf
对af无定义
shr逻辑右移移出1则cf=1
最高位改变则of=1(有符号负数必溢出)
sf,pf,zf
对af无定义
sar算术右移移出1则cf=1
最高位改变则of=1(实际上不可能溢出)
sf,pf,zf
对af无定义
rol循环左移移出1则cf=1
最高位改变则of=1(有实际意义)
对sf,pf,zf无影响
对af无定义
ror循环右移移出1则cf=1
最高位改变则of=1(有实际意义)
对sf,pf,zf无影响
对af无定义
rcl带cf循环左移移出1则cf=1
最高位改变则of=1(有实际意义)
对sf,pf,zf无影响
对af无定义
rcr带cf循环右移移出1则cf=1
最高位改变则of=1(有实际意义)
对sf,pf,zf无影响
对af无定义

5. 分支指令: 标志位的应用

1. cmp

2. jmp label/r16/m16

(1) 功能: ip << label/r16/m16

(2) 扩展:

jmp short ptr xxx 跳转范围-128~127

jmp near ptr xxx 跳转范围-32768~32767

jmp far ptr xxx

这个不止会修改ip还会修改cs, 由于代码段过长,可能导致一个段放不下的跳转

ip修改为xxx的偏移地址

cs修改为xxx的段地址, 只有jmp far ptr label, 或者jmp 段地址:偏移地址, 两种会改变cs的值

3. jcc label

(1) 功能:满足条件"cc"则跳转到label,否则执行下一条指令

条件转移指令中的条件

(2)分类掌握
1. 检查单个标志位

J[flag]/JN[flag]

考察flag位为1(J[flag])或为0(JN[flag])

其中特别的有JZ=JE(cmp后zf为1等价于两数相等), JC=JB(cmp后cf为1等价于两数看成无符号数时被减数小于减数即below)

2. 大小关系

below => B: 无符号数的小于

less => L: 有符号数的小于

greater => G: 有符号数的大于

equal => Z: 等于, 加在大小关系的后面

答疑:
  1. 为什么没有无符号数的大于? 因为光凭标志位CF无法判断被减数是否大于减数, 但是通过SF和OF可以判断, 因此有符号数和无符号数的"大于"关系合并为用SF和OF判断

  2. 为什么SF不等于OF代表小于? SF不等于OF分两种情况

    1. SF=1, OF=0, 表示结果为负数, 结果没溢出. 这种情况大家一般都能理解: OF=0说明运算结果的真值是正确的, 此时两数相减结果为负数说明被减数小于减数, 这是数学常识

    2. SF=0, OF=1, 表示结果为正数, 但是发生了溢出, 这是对被减数小于减数的一种特殊情况的补充

      先给结论: 这是在考虑负数减正数但是结果溢出了的情况

      我们来考虑怎样的情况会产生这样的标志. 以八位的减法运算来举例, 分类讨论, 先考察哪些减法会产生溢出, 再来考察SF是否=0, 揪出这种特殊的减法

      • 正数减正数: 不可能出现溢出. 原因: 正数减正数想要溢出一定是下溢, 考虑最极端情况, 最小的正数减去最大的正数: 1 - 127 = -126 > -128没有溢出
      • 正数减负数: 可能出现溢出. 原因: 正数减负数想要溢出一定是上溢, 考虑极端情况, 最小的正数减去最小的负数(绝对值最大): 真值: 1- (-128) = 129 > 127 确实产生了溢出, 但是相减后SF=1(01H - 80H = 81H, SF=1), 不满足条件
      • 负数减负数: 不可能溢出, 同正数减正数
      • 负数减正数: 可能出现溢出, 负数减正数如果溢出一定是下溢, 考虑极端情况, 最小的负数减去最大的正数: -128 - 127 = -255 < -128 狠狠的溢出了, 再考察SF, SF=0 (80H - 7FH = 01H, SF=0). 那有的同学会问了, 那要是没溢出怎么办, 那就回到了SF=1, OF=0的情况

      过程中还产生了个二级结论, 若OF=1, 1. SF=1一定是正数减负数 2. SF=0一定是负数减正数

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/749863.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

如何在IDEA 中设置背景图片

在IDEA 中设置背景图片&#xff0c;可以按照以下步骤操作&#xff1a; 1、打开 IntelliJ IDEA 软件&#xff0c;进入代码编辑主界面。 点击编辑窗口上方的“File”菜单项。 2、在下拉子菜单中&#xff0c;选择“Settings”选项&#xff08;如果你使用的是 macOS&#xff0c;可…

Spark-Scala语言实战(1)

在之前的文章中&#xff0c;我们学习了如何在Linux安装Spark以及Scala&#xff0c;想了解的朋友可以查看这篇文章。同时&#xff0c;希望我的文章能帮助到你&#xff0c;如果觉得我的文章写的不错&#xff0c;请留下你宝贵的点赞&#xff0c;谢谢。 Spark及Scala的安装https:/…

【智能算法】保姆级教程-如何使用CEC测试集,以及如何定义自己的优化问题

目录 1.准备工作2.使用CEC2005测试集3.自定义优化问题-无约束问题4.自定义优化问题-有约束问题5.代码实现 1.准备工作 一个CEC2005测试集 一个测试智能算法&#xff0c;比如麻雀搜索算法SSA 2.使用CEC2005测试集 以CEC2005测试集函数F7为例&#xff1a; 3.自定义优化问题…

solr/ES 分词插件Jcseg设置自定义词库

步骤&#xff1a; 1、找到配置文件jcseg-core/target/classes/jcseg.properties修改配置&#xff1a; 下载地址: https://gitee.com/lionsoul/jcseg#5-如何自定义使用词库 lexicon.path {jar.dir}/../custom-word 设置lexicon路径&#xff0c;我们这个配置可以自定义&#xf…

计算机网络-概述

文章目录 1.2 因特网概述1.2.1 网络、互连网&#xff08;互联网&#xff09;和因特网1.2.2 因特网发展的三个阶段1.2.4 因特网的组成 1.3 三种交换方式1.3.1 电路交换1.3.2 分组交换1.3.3 报文交换1.3.4 三种方式对比 1.4 计算机网络的定义1.5 计算机网络的性能指标1.5.1 速率1…

antd5 虚拟列表原理(rc-virtual-list)

github:https://github.com/react-component/virtual-list rc-virtual-list 版本 3.11.4(2024-02-01) 版本&#xff1a;virtual-list-3.11.4 Development npm install npm start open http://localhost:8000/List 组件接收 Props PropDescriptionTypeDefaultchildrenRender …

精读《手写 JSON Parser》

1 引言 JSON.parse 是浏览器内置的 API&#xff0c;但如果面试官让你实现一个怎么办&#xff1f;好在有人已经帮忙做了这件事&#xff0c;本周我们一起精读这篇 JSON Parser with Javascript 文章吧&#xff0c;再温习一遍大学时编译原理相关知识。 2 概述 & 精读 要解析…

【机器学习】分类模型的评价方法

&#x1f33b;个人主页&#xff1a;相洋同学 &#x1f947;学习在于行动、总结和坚持&#xff0c;共勉&#xff01; #学习笔记# 目录 一、混淆矩阵&#xff08;Confusion Matrix&#xff09; 二、评估指标&#xff08;Evaluation metrics&#xff09; 1.正确率(accuracy) …

R统计学3 - 数据分析入门问题41-60

往期R统计学文章: R统计学1 - 基础操作入门问题1-20 R统计学2 - 数据分析入门问题21-40 41. R 语言如何做双坐标图? # 创建模拟数据 year <- 2014:2024 gdp <- data.frame(year, GDP = sort(rnorm(11, 1000, 100))) ur <- data.frame(year, UR = rnorm(11, 5, 1…

计算机网络(7)----应用层

目录 一.应用层的基本概念 1.应用层的基本概述 2.网络应用模型 &#xff08;1&#xff09;客户/服务器模型 &#xff08;2&#xff09;P2P模型 二.应用程序相关 1.DNS系统 &#xff08;1&#xff09;域名与域名服务器 &#xff08;2&#xff09;域名解析过程&#xff…

2024 第一届VCTF 纳新赛 Web方向 题解WP

hackjs 题目描述&#xff1a;A baby oldjs, just warm up. 附件给源码 const express require(express) const fs require(fs) var bodyParser require(body-parser); const app express() app.use(bodyParser.urlencoded({extended: true })); app.use(bodyParser.json…

CI/CD实战-git工具使用 1

版本控制系统 本地版本控制系统 集中化的版本控制系统 分布式版本控制系统 git官网文档&#xff1a;https://git-scm.com/book/zh/v2 Git 有三种状态&#xff1a;已提交&#xff08;committed&#xff09;、已修改&#xff08;modified&#xff09; 和 已暂存&#xff08;sta…

嵌入式硬件设计(一)|利用 NodeMCU-ESP8266 开发板和继电器结合APP“点灯•blinker”制作Wi-Fi智能开关(附有关硬件详细资料)

概述 本文主要讲述利用 NodeMCU-ESP8266 开发板和继电器通过手机 APP “ 点灯 • Blinker ” 制作一款能够由手机控制的WiFi 智能开关&#xff0c;从而实现智能物联。NodeMCU 是基于 Lua 的开源固件&#xff0c;ESP8266-NodeMCU是一个开源硬件开发板&#xff0c;支持WiFi功能&a…

OpenCV4.9.0开源计算机视觉库在 Linux 中安装

返回目录&#xff1a;OpenCV系列文章目录&#xff08;持续更新中......&#xff09; 上一篇&#xff1a;OpenCV 环境变量参考 下一篇&#xff1a;将OpenCV与gcc和CMake结合使用 引言&#xff1a; OpenCV是一个开源的计算机视觉库&#xff0c;由英特尔公司所赞助。它是一个跨…

深度学习-基于机器学习的情绪分析研究

概要 互联网技术的迅速发展使得社交平台逐渐成为热点事件中社会情感的枢纽。社会热点事件的舆论监管的其中一个重要环节就是能够准确分析民众的社会情绪。本文旨在探索可以基于文本大数据彻底分析民众对热点事件的社会情绪的模型和方法。先是从社交平台上借助文本大数据、对数据…

(一)Neo4j下载安装以及初次使用

&#xff08;一&#xff09;下载 官网地址&#xff1a;Neo4j Graph Database & AnamConnect data as its stored with Neo4j. Perform powerful, complex queries at scale and speed with our graph data platform.https://neo4j.com/ &#xff08;二&#xff09;安装并配…

ideaSSM失物招领管理系统网页模式开发mysql数据库web结构java编程计算机网页源码maven项目

一、源码特点 idea ssm 失物招领管理系统是一套完善的完整信息管理系统&#xff0c;结合SSM框架完成本系统SpringMVC spring mybatis &#xff0c;对理解JSP java编程开发语言有帮助系统采用SSM框架&#xff08;MVC模式开发&#xff09;&#xff0c;系统具有完整的源代码和数…

YOLOv8训练好模型后,追加轮数继续训练、或者提前终止训练,缩减训练轮数

一、前言 而且此教程适用的情况是你已经训练好了此模型&#xff0c;想继续追加一些轮数。比如训练进度是120/120&#xff0c;已经完成了&#xff0c;继续追加10轮&#xff0c;或者你原先定的是200轮&#xff0c;希望缩减到150轮&#xff0c;可以使用我说的这个方法。为什么缩减…

深度学习-2.7 机器学习目标与模型评估方法

文章目录 深度学习目标与模型评估方法1. 深度学习目标与模型评估方法2. 手动实现训练集和测试集切分3. Dataset和DataLoader基本使用方法与数据集切分函数1.Dataset和DataLoader的基本使用方法2.建模及评估过程 4. 实用函数补充 深度学习目标与模型评估方法 1. 深度学习目标与…

LeetCode 7 / 100

哈希表、双指针 哈希表两数之和字母异位词分组最长连续序列 双指针移动零盛最多水的容器三数之和接雨水 LeetCode 1.两数之和 LeetCode 49. 字母异位词分组 LeetCode 128. 最长连续序列 LeetCode [283. 移动零](https://leetcode.cn/problems/move-zeroes/?envTypestudy-plan-…