【模拟string函数的实现】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

目录

前言

模拟string函数的实现

浅拷贝

深拷贝

vs和g++下string结构的说明

总结


前言

模拟string函数的实现

浅拷贝

深拷贝

总结


前言

世上有两种耀眼的光芒,一种是正在升起的太阳,一种是正在努力学习编程的你!一个爱学编程的人。各位看官,我衷心的希望这篇博客能对你们有所帮助,同时也希望各位看官能对我的文章给与点评,希望我们能够携手共同促进进步,在编程的道路上越走越远!


提示:以下是本篇文章正文内容,下面案例可供参考

模拟string函数的实现

string.h
#pragma once
#include <assert.h>
//string其实就是一个字符顺序表,唯一的区别就是在有效字符后面加了一个\0
namespace bit
{class string{public:typedef char* iterator;//把类型重命名成iterator,然后让类域隔开typedef const char* const_iterator;//const_iterator其实就是const char*const_iterator begin() const{return _str;}const_iterator end() const//const修饰的是this{return _str + _size;}//函数的类型是无法支持函数的重载iterator begin(){return _str;//返回的是字符串第一个字符的下标}iterator end(){return _str + _size;//返回的是'\0'的下标}//无参的构造函数//string()//	:_str(nullptr)//不能给str空指针,怕返回空指针//	//如果给str赋值 nullptr,采用c语言的接口,返回的字符串是空指针,打印空指针会报错的//	,_size(0)//	,_capacity(0)//{}//c++兼容c,我们要用c语言的接口:返回字符串const char* c_str() const{return _str;}所以,我们要给str开一个空间,并赋值'\0',返回字符的地址,这是可以的//string()//	:_str(new char[1])//	, _size(0)//	, _capacity(0)//{//	_str[0] = '\0';//}//带参的构造函数/*string(const char* str)//strlen:遍历字符串,遇到 \0 就停止,不易多调用:_size(strlen(str)),_str(new char[strlen(str)+1]),_capacity(strlen(str))//capacity:不包含 \0 {strcpy(_str, str);}*///以上的无参和带参的构造函数合二为一:全缺省的构造函数(即可传参,也可不传传参)//第一种情况://string(const char* str = nullptr)//如果传的是无参,strlen(str):遍历字符串时,会对指针指向的内容解引用,str指向的是空指针//第二种情况://string(const char* str = '\0')//也不能给str赋值 '\0',左右两边的类型要匹配;右边类型:char  左边类型:const char*//第三种情况://string(const char* str = "\0")//字符串是"\0",但是结束时,还会再加一个 \0//第四种情况:string(const char* str = "")//缺省值给一个空字符串:_size(strlen(str)){_capacity = _size;//capacity:存有效的字符空间,有效的字符是0个,但是还开了一个空间,用来存\0 _str = new char[_capacity + 1];strcpy(_str, str);}size_t capacity() const{return _capacity;}//遍历size_t size() const{return _size;//返回有效字符串的个数}//函数的声明和定义在一块,本质就相当于是内联char& operator[](size_t pos){assert(pos < _size);return _str[pos];//这些数据在堆区上,出来作用域也不会销毁,可以返回别名}//函数重载,上面的和下面的各用各的const char& operator[](size_t pos) const{//只能获取pos位置的字符,但是不能修改assert(pos < _size);return _str[pos];//这些数据在堆区上,出来作用域也不会销毁,可以返回别名}//s2(s1):深拷贝(拷贝构造函数)string(const string& s){_str = new char[s._capacity + 1];strcpy(_str, s._str);_size = s._size;_capacity = s._capacity;}//s2(s1)string(const string& s){string tmp(s._str);swap(tmp);}//赋值运算符重载(s1 = s3):也会出现浅拷贝的问题string& operator=(const string& s){char* tmp = new char[s._capacity + 1];strcpy(tmp, s._str);delete[] _str;//把s1原来空间释放掉_str = tmp;_size = s._size;_capacity = s._capacity;return *this;}//析构函数~string(){delete[] _str;_str = nullptr;_size = _capacity = 0;}void resize(size_t n, char ch = '\0')//半缺省函数,有实参会替换缺省值{//保留前n个数据if (n <= _size){_str[n] = '\0';_size = n;}else{reserve(n);//n > capacity,就扩容for (size_t i = _size; i < n; i++){_str[i] = ch;}_str[n] = '\0';_size = n;}}void reserve(size_t n){if (n > _capacity){//手动扩容char* tmp = new char[n + 1];//开空间永远要多开一个,多开的一个是给'\0'准备的strcpy(tmp, _str);//拷贝数据delete[] _str;//释放旧空间_str = tmp;//指针指向新空间_capacity = n;}}void push_back(char ch){// 扩容2倍/*if (_size == _capacity){reserve(_capacity == 0 ? 4 : 2 * _capacity);}_str[_size] = ch;++_size;_str[_size] = '\0';*/insert(_size, ch);//复用insert()函数}void append(const char* str){// 扩容//size_t len = strlen(str);//if (_size + len > _capacity)//{//	//_size:当前字符串的长度;len:插入的字符串的长度;'\0'会单独开空间存放//	reserve(_size + len);//}insert(_size, str);//复用insert()函数}string& operator+=(char ch){push_back(ch);return *this;}string& operator+=(const char* str){append(str);return *this;}void insert(size_t pos, char ch){assert(pos <= _size);// 扩容2倍if (_size == _capacity){reserve(_capacity == 0 ? 4 : 2 * _capacity);}//挪动数据方法一:/*int end = _size;//while (end >= pos)//end:有符号;pos:无符号;有符号会向无符号提升while (end >= (int)pos)//这里的循环是把包括pos位置和end位置之间的数据往后挪动{//如果一个运算符两边的操作数的类型不同的时候,会发生类型提升(范围小的向范围大的提升)_str[end + 1] = _str[end];--end;}*//*_str[pos] = ch;++_size;*///挪动数据方法二:size_t end = _size + 1;while (end > pos){_str[end] = _str[end - 1];--end;}_str[pos] = ch;++_size;}void insert(size_t pos, const char* str){assert(pos <= _size);//pos=size--->就相当于尾插size_t len = strlen(str);if (_size + len > _capacity){// 扩容reserve(_size + len);}size_t end = _size + len;while (end > pos + len - 1){_str[end] = _str[end - len];end--;}strncpy(_str + pos, str, len);_size += len;}void erase(size_t pos, size_t len = npos){assert(pos < _size);//不用删除\0//if (len == npos || len + pos >= _size)//假如len == npos-1,npos是-1,是无符号整型的最大值,再加pos,可能会存在溢出的风险if (len == npos || len >= _size - pos){_str[pos] = '\0';_size = pos;}else{strcpy(_str + pos, _str + pos + len);_size -= len;}}void swap(string& s){// 我们已经用 using namespace std;将std命名空间域给展开了,为什么还要加 std:: 呢?// 将 std 命名空间域展开(相当于:小王家开了一个通告,说你们可以拿我家的菜),// 但是顺序还是不变的:局部域----->全局域----->命名空间域// 加 std::是为了防止 swap()函数在局部域找swap()函数的定义出处时,发生事故;// 不加 std:: 的话,swap()函数会先找到 swap(string& s)的,但是参数的类型不一样,会发生报错 std::swap(_str, s._str);//调用库里的模板,这里是交换了堆区空间的地址std::swap(_size, s._size);std::swap(_capacity, s._capacity);}//找字符size_t find(char ch, size_t pos = 0) const{assert(pos < _size);for (size_t i = pos; i < _size; i++){if (_str[i] == ch)return i;}return npos;}//找字符串size_t find(const char* sub, size_t pos = 0) const{assert(pos < _size);const char* p = strstr(_str + pos, sub);if (p){return p - _str;//指针 - 指针 == 两个指针之间的元素个数(返回的是下标)}else{return npos;}}string substr(size_t pos = 0, size_t len = npos){string sub;//if (len == npos || len >= _size-pos)if (len >= _size - pos){for (size_t i = pos; i < _size; i++){sub += _str[i];}}else{for (size_t i = pos; i < pos + len; i++){sub += _str[i];}}return sub;}//只清理空间中的数据,并不会缩容void clear(){_size = 0;_str[_size] = '\0';}private://初始化列表初始化的顺序和声明的顺序一样char* _str;size_t _size;size_t _capacity;public:static const int npos;//npos:是一个公有的静态成员变量};const int string::npos = -1;//string中的非成员函数void swap(string& x, string& y){x.swap(y);}//全局函数bool operator==(const string& s1, const string& s2){int ret = strcmp(s1.c_str(), s2.c_str());return ret == 0;}bool operator<(const string& s1, const string& s2){int ret = strcmp(s1.c_str(), s2.c_str());return ret < 0;}bool operator<=(const string& s1, const string& s2){return s1 < s2 || s1 == s2;}bool operator>(const string& s1, const string& s2){return !(s1 <= s2);}bool operator>=(const string& s1, const string& s2){return !(s1 < s2);}bool operator!=(const string& s1, const string& s2){return !(s1 == s2);}//流插入(必须是全局函数,没有访问类中的私有成员变量,所以不需要设置成友元函数)ostream& operator<<(ostream& out, const string& s){for (auto ch : s){out << ch;}return out;}//流提取(是一个覆盖)istream& operator>>(istream& in, string& s)//提取的字符放入string类型的对象中,所以不需要要用const来修饰{//s是s1和s2的别名,s对象中有s1或s2的字符串内容,流提取是一个覆盖;//此时流提取只会在字符串的尾部插入数据,所以我们要先把s对象中的数据清理掉s.clear();char ch;//in >> s[i];//不能这么写,对象s中还没有写入字符,还没有数据//in >> ch;//c++的cin和c语言的scanf是读元素的时候,是读不到空格和换行的//(他们认为空格或换行是多个元素之间的分割符,会自动把空格或换行符给忽略掉)//c语言应该用 getchar/getc;但是c++是不能用的//(因为c语言和c++的iostream流不是同一个,他们都有各自的缓存区)ch = in.get();//所以用它来取字符char buff[128];//1、在栈上开空间比在堆上开空间要快一些;2、出了函数作用域空间就销毁了,不会一直浪费空间size_t i = 0;//流插入和流提取遇到 空格或换行 就默认结束while (ch != ' ' && ch != '\n'){//buff:字符数组,一段一段往对象s中加buff[i++] = ch;// [0,126]if (i == 127){buff[127] = '\0';s += buff;//把前127个字符加入对象s中i = 0;}ch = in.get();}if (i > 0){buff[i] = '\0';s += buff;//把有效的数据个数加入对象s中}return in;}//流提取(是一个覆盖)//istream& operator>>(istream& in, string& s)//提取的字符放入string类型的对象中,所以不需要要用const来修饰//{//	//s是s1和s2的别名,s对象中有s1或s2的字符串内容,流提取是一个覆盖;//	//此时流提取只会在字符串的尾部插入数据,所以我们要先把s对象中的数据清理掉//	s.clear();//	char ch;//	//in >> s[i];//不能这么写,对象s中还没有写入字符,还没有数据//	//in >> ch;//	//c++的cin和c语言的scanf是读元素的时候,是读不到空格和换行的//	//(他们认为空格或换行是多个元素之间的分割符,会自动把空格或换行符给忽略掉)//	//c语言应该用 getchar/getc;但是c++是不能用的//	//(因为c语言和c++的iostream流不是同一个,他们都有各自的缓存区)//	ch = in.get();//所以用它来取字符//	s.reserve(128);//	//流插入和流提取遇到 空格或换行 就默认结束//	while (ch != '\n' && ch != ' ')//	{//		s += ch;//		ch = in.get();//	}//	return in;//}//获取一行istream& getline(istream& in, string& s){s.clear();char ch;//in >> ch;ch = in.get();char buff[128];size_t i = 0;while (ch != '\n'){buff[i++] = ch;// [0,126]if (i == 127){buff[127] = '\0';s += buff;  i = 0;}ch = in.get();}if (i > 0){buff[i] = '\0';s += buff;}return in;}
	void test_string1(){string s1("hello world");string s2;cout << s1.c_str() << endl;cout << s2.c_str() << endl;for (size_t i = 0; i < s1.size(); i++){s1[i]++;}cout << endl;//遍历:下标+[]for (size_t i = 0; i < s1.size(); i++){//s1:既能调用const的函数,也可以调用非const的函数//s1.operator[](i)cout << s1[i] << "";}cout << endl;const string s3("xxxx");//只能调用const char& operator[](size_t pos) const这个函数for (size_t i = 0; i < s3.size(); i++){//s3[i]++;cout << s3[i] << " ";}cout << endl;数组的越界是很不好检查的://int a[10];数组的读是检查不出来的//a[10];//a[11];数组的写不一定能检查出来。因为数组的越界检查是一种抽查//a[10] = 1;}void test_string2(){string s3("hello world");//范围for是一个替换机制(会自动替换成迭代器,这个地方是写死的,迭代器中必须要有iterator、begin、end)://自动取对象s3里面的数据赋值给ch,自动迭代,自动加加for (auto ch : s3)//s3是普通对象,范围for替换成普通迭代器{cout << ch << " ";}cout << endl;//迭代器(像指针,但不一定是指针)string::iterator it3 = s3.begin();while (it3 != s3.end()){*it3 -= 1;cout << *it3 << " ";++it3;}cout << endl;const string s4("xxxx");string::const_iterator it4 = s4.begin();while (it4 != s4.end()){//*it4 += 3;cout << *it4 << " ";++it4;}cout << endl;//s4是const对象,范围for替换成const迭代器(class类中必须声明iterator、begin、end)for (auto ch : s4){cout << ch << " ";}cout << endl;}void test_string3(){string s3("hello world");s3.push_back('1');s3.push_back('2');cout << s3.c_str() << endl;s3 += 'x';s3 += "yyyyyy";cout << s3.c_str() << endl;string s1("hello world");s1.insert(11, 'x');cout << s1.c_str() << endl;s1.insert(0, 'x');cout << s1.c_str() << endl;}void test_string4(){string s1("hello world");cout << s1.c_str() << endl;s1.erase(6, 3);cout << s1.c_str() << endl;s1.erase(6, 30);cout << s1.c_str() << endl;s1.erase(3);cout << s1.c_str() << endl;string s2("hello world");cout << s2.c_str() << endl;s2.resize(5);cout << s2.c_str() << endl;s2.resize(20, 'x');cout << s2.c_str() << endl;}void test_string5(){string s1("hello world");cout << s1.c_str() << endl;//此时,这里是 浅拷贝/值拷贝;s1和s2中的_str所指向的空间是同一块,析构函数释放数据会释放两次,//并且改动数据,对两个都有影响string s2(s1);cout << s2.c_str() << endl;s1[0] = 'x';cout << s1.c_str() << endl;cout << s2.c_str() << endl;string s3("xxxxx");s1 = s3;cout << s1.c_str() << endl;cout << s3.c_str() << endl;}void test_string6(){string s1("hello world");cout << s1.c_str() << endl;s1.insert(6, "xxx");cout << s1.c_str() << endl;string s2("xxxxxxx");cout << s1.c_str() << endl;cout << s2.c_str() << endl;swap(s1, s2);//调用库里面的swap模板,代价:三次拷贝构造+一次析构(涉及到深拷贝,释放和申请空间的次数太多)s1.swap(s2);//高效的方法:交换两个堆区空间的地址,不需要多次释放和申请空间cout << s1.c_str() << endl;cout << s2.c_str() << endl;}void test_string7(){string url1("https://legacy.cplusplus.com/reference/string/string/substr/");string url2("http://www.baidu.com/s?ie=utf-8&f=8&rsv_bp=1&rsv_idx=1&tn=65081411_1_oem_dg&wd=%E5%90%8E%E7%BC%80%20%E8%8B%B1%E6%96%87&fenlei=256&rsv_pq=0xc17a6c03003ede72&rsv_t=7f6eqaxivkivsW9Zwc41K2mIRleeNXjmiMjOgoAC0UgwLzPyVm%2FtSOeppDv%2F&rqlang=en&rsv_dl=ib&rsv_enter=1&rsv_sug3=4&rsv_sug1=3&rsv_sug7=100&rsv_sug2=0&rsv_btype=i&inputT=1588&rsv_sug4=6786");string protocol, domain, uri;size_t i1 = url1.find(':');if (i1 != string::npos){protocol = url1.substr(0, i1 - 0);cout << protocol.c_str() << endl;}// strcharsize_t i2 = url1.find('/', i1 + 3);if (i2 != string::npos){domain = url1.substr(i1 + 3, i2 - (i1 + 3));cout << domain.c_str() << endl;uri = url1.substr(i2 + 1);cout << uri.c_str() << endl;}// strstr  size_t i3 = url1.find("baidu");cout << i3 << endl;}void test_string8(){string s1("hello world");string s2("hello world");cout << (s1 == s2) << endl;cout << ("hello world" == s2) << endl;//左边是调用构造成员函数,类型是 const char*//左边不能是一个成员函数,他必须是一个对象,对象才能调用成员函数//(解释赋值运算符重载为什么是全局函数,如果是成员函数的话,第一个参数是 this,是对象的地址)cout << (s1 == "hello world") << endl;//单参数的构造函数可以支持隐式类型转换(const char*转换成string类型)cout << s1 << endl;cout << s2 << endl;//c++中的cout和cin的缓存区也不是同一个,所以cout出去的,不会影响cin进来的cin >> s1 >> s2;cout << s1 << endl;cout << s2 << endl;getline(cin, s1);cout << s1 << endl;}void test_string9(){string s1;cin >> s1;cout << s1.capacity() << endl;}void test_string10(){string s1("hello world");string s2(s1);cout << s1 << endl;cout << s2 << endl;}
}
test.cpp
#define _CRT_SECURE_NO_WARNINGS 1
#include<iostream>
using namespace std;
#include<string>
#include"string.h"int main()
{bit::test_string1();return 0;
}//内置类型为什么支持流插入和流提取呢?
//因为库里面直接就把内置类型重载了,直接掉库里面的函数;又可以自动识别类型,是因为这些函数有互相构成了函数重载

tmp要初始化为nullptr,否则当swap交换之后,tmp指向空,出了函数的作用域之后,会调用析构函数,析构函数会对tmp局部变量销毁,如果tmp是随机值会报错,而是nullptr的话,就不会有问题。传统写法和现代写法效率基本都一样。

拷贝构造是用一个存在的对象去构造另外一个要初始化的对象,那另外一个对象是没有空间的。

赋值是两个对象都已经存在了。

栈上开空间要比堆区上开空间要快,而且成本更低。

浅拷贝

浅拷贝:也称位拷贝,编译器只是将对象中的值拷贝过来。如果对象中管理资源,最后就会导致多个对象共享同一份资源,当一个对象销毁时就会将该资源释放掉,而此时另一些对象不知道该资源已经被释放,以为还有效,所以当继续对资源进项操作时,就会发生发生了访问违规。

说明:

上述String类没有显式定义其拷贝构造函数与赋值运算符重载,此时编译器会合成默认的,当用s1构 造s2时,编译器会调用默认的拷贝构造。最终导致的问题是,s1、s2共用同一块内存空间,在释放时同一块 空间被释放多次而引起程序崩溃,这种拷贝方式,称为浅拷贝。

深拷贝

vs和g++下string结构的说明

注意:下述结构是在32位平台下进行验证,32位平台下指针占4个字节。

  • vs下string的结构

string总共占28个字节,内部结构稍微复杂一点,先是有一个联合体,联合体用来定义string中字 符串的存储空间:

  • 当字符串长度小于16时,使用内部固定的字符数组来存放
  • 当字符串长度大于等于16时,从堆上开辟空间
union _Bxty{   // storage for small buffer or pointer to larger onevalue_type _Buf[_BUF_SIZE];pointer _Ptr;char _Alias[_BUF_SIZE]; // to permit aliasing} _Bx;

这种设计也是有一定道理的,大多数情况下字符串的长度都小于16,那string对象创建好之后,内 部已经有了16个字符数组的固定空间,不需要通过堆创建,效率高。

其次:还有一个size_t字段保存字符串长度,一个size_t字段保存从堆上开辟空间总的容量

最后:还有一个指针做一些其他事情。

故总共占16+4+4+4=28个字节。

  • g++下string的结构

G++下,string是通过写时拷贝实现的,string对象总共占4个字节,内部只包含了一个指针,该指 针将来指向一块堆空间,内部包含了如下字段:

  • 空间总大小
  • 字符串有效长度
  • 引用计数
struct _Rep_base{size_type               _M_length;size_type               _M_capacity;_Atomic_word            _M_refcount;};
  • 指向堆空间的指针,用来存储字符串。


总结

好了,本篇博客到这里就结束了,如果有更好的观点,请及时留言,我会认真观看并学习。
不积硅步,无以至千里;不积小流,无以成江海。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/749371.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java面向对象案例之描述专业和学生(4)

类的方法图 学生类&#xff1a; 属性&#xff1a;学号&#xff0c;姓名&#xff0c;年龄&#xff0c;所学习的专业方法&#xff1a;学习的方法&#xff0c;描述学习状态。描述内容包括姓名、学号、年龄、所学习的专业信息 专业类&#xff1a; 属性&#xff1a;专业编号&#xf…

2024年【天津市安全员C证】考试资料及天津市安全员C证考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 天津市安全员C证考试资料根据新天津市安全员C证考试大纲要求&#xff0c;安全生产模拟考试一点通将天津市安全员C证模拟考试试题进行汇编&#xff0c;组成一套天津市安全员C证全真模拟考试试题&#xff0c;学员可通过…

uniapp——第2篇:编写vue语法

前提&#xff0c;建议先学会前端几大基础&#xff1a;HTML、CSS、JS、Ajax&#xff0c;还有一定要会Vue!&#xff08;Vue2\Vue3&#xff09;都要会&#xff01;&#xff01;&#xff01;不然不好懂 一、去哪写&#xff1f; 就在【pages】的你的人一个页面文件夹里的【.vue】文…

多站合一的音乐搜索下载助手PHP源码l亲测

源码获取方式 回复&#xff1a;031601 搭建教程&#xff1a; 将源码下载上传至宝塔面板&#xff0c;直接运行即可~ 说明&#xff1a; 该源码进行测试&#xff0c;测试成功源码无加密优化相关其他采集问题。

langchain+chatglm3+BGE+Faiss Linux环境安装依赖

前言 本篇默认读者已经看过之前windows版本&#xff0c;代码就不赘述&#xff0c;本次讲述是linux环境配置 超短代码实现&#xff01;&#xff01;基于langchainchatglm3BGEFaiss创建拥有自己知识库的大语言模型(准智能体)本人python版本3.11.0&#xff08;windows环境篇&…

Go微服务实战——服务的配置获取(nacos做配置中心)

nacos做配置中心 demo仓库 docker安装nacos docker pull nacos/nacos-server 使用docker每次需要sudo可以执行如下命令 sudo groupadd docker #添加用户组 sudo gpasswd -a username docker #将当前用户添加至用户组-d就是删除该组中的用户 newgrp docker…

L1-070 吃火锅分数 15

我们老师的话说就是&#xff0c;你学长睡了四年的床板子你不收拾收拾就往上躺着睡觉吗&#xff1f;&#xff1f;&#xff1f;一定要记得用到计数变量时首先要赋初值0或者其他&#xff0c;按题目要求来。 用 输入样例 1&#xff1a; Hello! are you there? wantta chi1 huo3…

排序链表的三种写法

题目链接&#xff1a;https://leetcode.cn/problems/sort-list/?envTypestudy-plan-v2&envIdtop-100-liked 第一种&#xff0c;插入排序&#xff0c;会超时 class Solution {public ListNode sortList(ListNode head) {//插入排序&#xff0c;用较为简单的方式解决ListNo…

程序人生——Java泛型和反射的使用建议

目录 引出泛型和反射建议93&#xff1a;Java的泛型是类型擦除的建议94&#xff1a;不能初始化泛型参数和数组建议95&#xff1a;强制声明泛型的实际类型 建议96&#xff1a;不同的场景使用不同的泛型通配符建议97&#xff1a;警惕泛型是不能协变和逆变的 建议98&#xff1a;建议…

C++:类之六脉神剑——默认成员函数

个人主页&#xff1a;日刷百题 系列专栏&#xff1a;〖C/C小游戏〗〖Linux〗〖数据结构〗 〖C语言〗 &#x1f30e;欢迎各位→点赞&#x1f44d;收藏⭐️留言&#x1f4dd; ​ ​ 一、默认成员函数 如果一个类中什么成员都没有&#xff0c;简称为 空类 。 空类中真的什么都…

【Poi-tl Documentation】自定义占位符来设置图片大小

前置说明&#xff1a; <dependency><groupId>com.deepoove</groupId><artifactId>poi-tl</artifactId><version>1.12.1</version> </dependency>模板文件&#xff1a; image_test.docx package run.siyuan.poi.tl.policy;imp…

双路控制比例方向阀放大器

该模块比例放大器用于控制一个带有两个螺线管的比例方向控制阀或一个/两个独立的比例压力阀或比例节流阀&#xff0c;每个阀带有一个或二个螺线管。 各种可调参数允许对相应阀门的最佳适应。单路双路四路控制&#xff0c;供电24VDC&#xff0c;输入指令兼容多种可选&#xff0c…

代码随想录训练营Day25:● 216.组合总和III ● 17.电话号码的字母组合

216.组合总和III 题目链接 https://leetcode.cn/problems/combination-sum-iii/description/ 题目描述 思路 自己写的效率会慢一些&#xff0c;而且没有用到剪枝 class Solution {List<List<Integer>> list new ArrayList<>();List<Integer> lis…

识别和定位 - 实现工业自动化及生产数字化,推动现代工业4.0

工业4.0的定义 工业 4.0 是指将智能数字化技术集成到制造和工业流程&#xff0c;包括工业物联网网络、人工智能、大数据、机器人和自动化等一系列技术。工业 4.0 能帮助企业实现智能制造&#xff0c;建立智能工厂&#xff0c;目标是提高生产力、效率和灵活性&#xff0c;同时在…

虹科Pico汽车示波器 | 免拆诊断案例 | 2015 款路虎神行者车熄火后散热风扇依旧高速运转

一、故障现象 一辆2015款路虎神行者车&#xff0c;搭载2.2 L发动机&#xff0c;累计行驶里程约为16万km。车主反映&#xff0c;车辆熄火后&#xff0c;散热风扇依旧高速运转&#xff0c;且无法停止。 二、故障诊断 接车后首先试车&#xff0c;故障现象的确存在。使用故障检…

软件测试之学习测试用例的设计(等价类法、边界值法、错误猜测法、场景法、因果图法、正交法)

1. 测试用例的概念 软件测试人员向被测试系统提供的一组数据的集合&#xff0c;包括 测试环境、测试步骤、测试数据、预期结果 2. 为什么在测试前要设计测试用例 测试用例是执行测试的依据 在回归测试的时候可以进行复用 是自动化测试编写测试脚本的依据 衡量需求的覆盖率…

性能测试工具——wrk的安装与使用

前言 想和大家来聊聊性能测试&#xff0c;聊到了性能测试必须要说的是性能测试中的工具&#xff0c;在这些工具中我今天主要给大家介绍wrk。 ​介绍 wrk是一款开源的性能测试工具 &#xff0c;简单易用&#xff0c;没有Load Runner那么复杂&#xff0c;他和 apache benchmar…

多种智能搜索算法可视化还原 3D 魔方

一、写在前面 许久没有写图形化界面的程序了&#xff0c;最近学习了一些经典的盲目搜索算法与智能搜索算法&#xff0c;正好拿来还原三阶魔方&#xff01;试试手&#xff01; 提前声明 我不是专业搞人工智能的&#xff0c;理论或者实现过程有些许错误也很正常&#xff0c;评论…

YOLOv5_seg-Openvino和ONNXRuntime推理【CPU】

纯检测系列&#xff1a; YOLOv5-Openvino和ONNXRuntime推理【CPU】 YOLOv6-Openvino和ONNXRuntime推理【CPU】 YOLOv8-Openvino和ONNXRuntime推理【CPU】 YOLOv7-Openvino和ONNXRuntime推理【CPU】 YOLOv9-Openvino和ONNXRuntime推理【CPU】 跟踪系列&#xff1a; YOLOv5/6/7-O…

解决游戏程序一运行就退出的问题

正文&#xff1a; 在游戏开发过程中&#xff0c;我们可能会遇到程序一运行就立即退出的情况。这种情况通常是由于程序中的某些逻辑错误或初始化问题导致的。 下面我们将分析可能的原因&#xff0c;并提供一些解决方案。 目录 正文&#xff1a; 原因分析&#xff1a; 解决方案…