SPI驱动分析之二

三、主控制器的驱动注册

文件spi_imx.c中

subsys_initcall(spi_imx_init);

static int __init spi_imx_init(void)
{
    return platform_driver_register(&spi_imx_driver);
}

static struct platform_driver spi_imx_driver = {
    .driver = {
           .name = DRIVER_NAME,
           .owner = THIS_MODULE,
           },
    .id_table = spi_imx_devtype,
    .probe = spi_imx_probe,
    .remove = __devexit_p(spi_imx_remove),
};


static int __devinit spi_imx_probe(struct platform_device *pdev)
{
    struct spi_imx_master *mxc_platform_info;
    struct spi_master *master;
    struct spi_imx_data *spi_imx;
    struct resource *res;
    int i, ret;

    mxc_platform_info = dev_get_platdata(&pdev->dev);
    if (!mxc_platform_info) {
        dev_err(&pdev->dev, "can't get the platform data\n");
        return -EINVAL;
    }

    master = spi_alloc_master(&pdev->dev, sizeof(struct spi_imx_data));
    if (!master)
        return -ENOMEM;

    platform_set_drvdata(pdev, master);

    master->bus_num = pdev->id;
    master->num_chipselect = mxc_platform_info->num_chipselect;

    spi_imx = spi_master_get_devdata(master);
    spi_imx->bitbang.master = spi_master_get(master);
    spi_imx->chipselect = mxc_platform_info->chipselect;

    for (i = 0; i < master->num_chipselect; i++) {
        if (spi_imx->chipselect[i] < 0)
            continue;
        ret = gpio_request(spi_imx->chipselect[i], DRIVER_NAME);
        if (ret) {
            while (i > 0) {
                i--;
                if (spi_imx->chipselect[i] >= 0)
                    gpio_free(spi_imx->chipselect[i]);
            }
            dev_err(&pdev->dev, "can't get cs gpios\n");
            goto out_master_put;
        }
    }

    spi_imx->bitbang.chipselect = spi_imx_chipselect;
    spi_imx->bitbang.setup_transfer = spi_imx_setupxfer;
    spi_imx->bitbang.txrx_bufs = spi_imx_transfer;
    spi_imx->bitbang.master->setup = spi_imx_setup;
    spi_imx->bitbang.master->cleanup = spi_imx_cleanup;
    spi_imx->bitbang.master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;

    init_completion(&spi_imx->xfer_done);

    spi_imx->devtype_data =
        spi_imx_devtype_data[pdev->id_entry->driver_data];

    res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
    if (!res) {
        dev_err(&pdev->dev, "can't get platform resource\n");
        ret = -ENOMEM;
        goto out_gpio_free;
    }

    if (!request_mem_region(res->start, resource_size(res), pdev->name)) {
        dev_err(&pdev->dev, "request_mem_region failed\n");
        ret = -EBUSY;
        goto out_gpio_free;
    }

    spi_imx->base = ioremap(res->start, resource_size(res));
    if (!spi_imx->base) {
        ret = -EINVAL;
        goto out_release_mem;
    }

    spi_imx->irq = platform_get_irq(pdev, 0);
    if (spi_imx->irq < 0) {
        ret = -EINVAL;
        goto out_iounmap;
    }

    ret = request_irq(spi_imx->irq, spi_imx_isr, 0, DRIVER_NAME, spi_imx);
    if (ret) {
        dev_err(&pdev->dev, "can't get irq%d: %d\n", spi_imx->irq, ret);
        goto out_iounmap;
    }

    spi_imx->clk = clk_get(&pdev->dev, NULL);
    if (IS_ERR(spi_imx->clk)) {
        dev_err(&pdev->dev, "unable to get clock\n");
        ret = PTR_ERR(spi_imx->clk);
        goto out_free_irq;
    }

    clk_enable(spi_imx->clk);
    spi_imx->spi_clk = clk_get_rate(spi_imx->clk);

    spi_imx->devtype_data.reset(spi_imx);

    spi_imx->devtype_data.intctrl(spi_imx, 0);
    ret = spi_bitbang_start(&spi_imx->bitbang);
    if (ret) {
        dev_err(&pdev->dev, "bitbang start failed with %d\n", ret);
        goto out_clk_put;
    }
    clk_disable(spi_imx->clk);

    dev_info(&pdev->dev, "probed\n");

    return ret;

out_clk_put:
    clk_disable(spi_imx->clk);
    clk_put(spi_imx->clk);
out_free_irq:
    free_irq(spi_imx->irq, spi_imx);
out_iounmap:
    iounmap(spi_imx->base);
out_release_mem:
    release_mem_region(res->start, resource_size(res));
out_gpio_free:
    for (i = 0; i < master->num_chipselect; i++)
        if (spi_imx->chipselect[i] >= 0)
            gpio_free(spi_imx->chipselect[i]);
out_master_put:
    spi_master_put(master);
    kfree(master);
    platform_set_drvdata(pdev, NULL);
    return ret;
}

spi_bitbang.c文件中

int spi_bitbang_start(struct spi_bitbang *bitbang)
{
    int    status;

    if (!bitbang->master || !bitbang->chipselect)
        return -EINVAL;

    INIT_WORK(&bitbang->work, bitbang_work);
    spin_lock_init(&bitbang->lock);
    INIT_LIST_HEAD(&bitbang->queue);

    if (!bitbang->master->mode_bits)
        bitbang->master->mode_bits = SPI_CPOL | SPI_CPHA | bitbang->flags;

    if (!bitbang->master->transfer)
        bitbang->master->transfer = spi_bitbang_transfer;
    if (!bitbang->txrx_bufs) {
        bitbang->use_dma = 0;
        bitbang->txrx_bufs = spi_bitbang_bufs;
        if (!bitbang->master->setup) {
            if (!bitbang->setup_transfer)
                bitbang->setup_transfer =
                     spi_bitbang_setup_transfer;
            bitbang->master->setup = spi_bitbang_setup;
            bitbang->master->cleanup = spi_bitbang_cleanup;
        }
    } else if (!bitbang->master->setup)
        return -EINVAL;
    if (bitbang->master->transfer == spi_bitbang_transfer &&
            !bitbang->setup_transfer)
        return -EINVAL;

    /* this task is the only thing to touch the SPI bits */
    bitbang->busy = 0;
    bitbang->workqueue = create_singlethread_workqueue(
            dev_name(bitbang->master->dev.parent));
    if (bitbang->workqueue == NULL) {
        status = -EBUSY;
        goto err1;
    }

    /* driver may get busy before register() returns, especially
     * if someone registered boardinfo for devices
     */
    status = spi_register_master(bitbang->master);
    if (status < 0)
        goto err2;

    return status;

err2:
    destroy_workqueue(bitbang->workqueue);
err1:
    return status;
}
EXPORT_SYMBOL_GPL(spi_bitbang_start);

spi_bitbang.c文件中

/**
 * spi_bitbang_transfer - default submit to transfer queue
 */
int spi_bitbang_transfer(struct spi_device *spi, struct spi_message *m)
{
    struct spi_bitbang    *bitbang;
    unsigned long        flags;
    int            status = 0;

    m->actual_length = 0;
    m->status = -EINPROGRESS;

    bitbang = spi_master_get_devdata(spi->master);

    spin_lock_irqsave(&bitbang->lock, flags);
    if (!spi->max_speed_hz)
        status = -ENETDOWN;
    else {
        list_add_tail(&m->queue, &bitbang->queue);
        queue_work(bitbang->workqueue, &bitbang->work);
    }
    spin_unlock_irqrestore(&bitbang->lock, flags);

    return status;
}
EXPORT_SYMBOL_GPL(spi_bitbang_transfer);

spi.c文件中

/**
 * spi_register_master - register SPI master controller
 * @master: initialized master, originally from spi_alloc_master()
 * Context: can sleep
 *
 * SPI master controllers connect to their drivers using some non-SPI bus,
 * such as the platform bus.  The final stage of probe() in that code
 * includes calling spi_register_master() to hook up to this SPI bus glue.
 *
 * SPI controllers use board specific (often SOC specific) bus numbers,
 * and board-specific addressing for SPI devices combines those numbers
 * with chip select numbers.  Since SPI does not directly support dynamic
 * device identification, boards need configuration tables telling which
 * chip is at which address.
 *
 * This must be called from context that can sleep.  It returns zero on
 * success, else a negative error code (dropping the master's refcount).
 * After a successful return, the caller is responsible for calling
 * spi_unregister_master().
 */
int spi_register_master(struct spi_master *master)
{
    static atomic_t        dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
    struct device        *dev = master->dev.parent;
    struct boardinfo    *bi;
    int            status = -ENODEV;
    int            dynamic = 0;

    if (!dev)
        return -ENODEV;

    /* even if it's just one always-selected device, there must
     * be at least one chipselect
     */
    if (master->num_chipselect == 0)
        return -EINVAL;

    /* convention:  dynamically assigned bus IDs count down from the max */
    if (master->bus_num < 0) {
        /* FIXME switch to an IDR based scheme, something like
         * I2C now uses, so we can't run out of "dynamic" IDs
         */
        master->bus_num = atomic_dec_return(&dyn_bus_id);
        dynamic = 1;
    }

    spin_lock_init(&master->bus_lock_spinlock);
    mutex_init(&master->bus_lock_mutex);
    master->bus_lock_flag = 0;

    /* register the device, then userspace will see it.
     * registration fails if the bus ID is in use.
     */
    dev_set_name(&master->dev, "spi%u", master->bus_num);
    status = device_add(&master->dev);
    if (status < 0)
        goto done;
    dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
            dynamic ? " (dynamic)" : "");

    mutex_lock(&board_lock);
    list_add_tail(&master->list, &spi_master_list);
    list_for_each_entry(bi, &board_list, list)
        spi_match_master_to_boardinfo(master, &bi->board_info);
    mutex_unlock(&board_lock);

    status = 0;

    /* Register devices from the device tree */
    of_register_spi_devices(master);
done:
    return status;
}
EXPORT_SYMBOL_GPL(spi_register_master);

static void spi_match_master_to_boardinfo(struct spi_master *master,
                struct spi_board_info *bi)
{
    struct spi_device *dev;

    if (master->bus_num != bi->bus_num)
        return;

    dev = spi_new_device(master, bi);
    if (!dev)
        dev_err(master->dev.parent, "can't create new device for %s\n",
            bi->modalias);
}

/**
 * spi_new_device - instantiate one new SPI device
 * @master: Controller to which device is connected
 * @chip: Describes the SPI device
 * Context: can sleep
 *
 * On typical mainboards, this is purely internal; and it's not needed
 * after board init creates the hard-wired devices.  Some development
 * platforms may not be able to use spi_register_board_info though, and
 * this is exported so that for example a USB or parport based adapter
 * driver could add devices (which it would learn about out-of-band).
 *
 * Returns the new device, or NULL.
 */
struct spi_device *spi_new_device(struct spi_master *master,
                  struct spi_board_info *chip)
{
    struct spi_device    *proxy;
    int            status;

    /* NOTE:  caller did any chip->bus_num checks necessary.
     *
     * Also, unless we change the return value convention to use
     * error-or-pointer (not NULL-or-pointer), troubleshootability
     * suggests syslogged diagnostics are best here (ugh).
     */

    proxy = spi_alloc_device(master);
    if (!proxy)
        return NULL;

    WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));

    proxy->chip_select = chip->chip_select;
    proxy->max_speed_hz = chip->max_speed_hz;
    proxy->mode = chip->mode;
    proxy->irq = chip->irq;
    strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
    proxy->dev.platform_data = (void *) chip->platform_data;
    proxy->controller_data = chip->controller_data;
    proxy->controller_state = NULL;

    status = spi_add_device(proxy);
    if (status < 0) {
        spi_dev_put(proxy);
        return NULL;
    }

    return proxy;
}
EXPORT_SYMBOL_GPL(spi_new_device);

/**
 * spi_alloc_device - Allocate a new SPI device
 * @master: Controller to which device is connected
 * Context: can sleep
 *
 * Allows a driver to allocate and initialize a spi_device without
 * registering it immediately.  This allows a driver to directly
 * fill the spi_device with device parameters before calling
 * spi_add_device() on it.
 *
 * Caller is responsible to call spi_add_device() on the returned
 * spi_device structure to add it to the SPI master.  If the caller
 * needs to discard the spi_device without adding it, then it should
 * call spi_dev_put() on it.
 *
 * Returns a pointer to the new device, or NULL.
 */
struct spi_device *spi_alloc_device(struct spi_master *master)
{
    struct spi_device    *spi;
    struct device        *dev = master->dev.parent;

    if (!spi_master_get(master))
        return NULL;

    spi = kzalloc(sizeof *spi, GFP_KERNEL);
    if (!spi) {
        dev_err(dev, "cannot alloc spi_device\n");
        spi_master_put(master);
        return NULL;
    }

    spi->master = master;
    spi->dev.parent = &master->dev;
    spi->dev.bus = &spi_bus_type;
    spi->dev.release = spidev_release;
    device_initialize(&spi->dev);
    return spi;
}
EXPORT_SYMBOL_GPL(spi_alloc_device);

/**
 * spi_add_device - Add spi_device allocated with spi_alloc_device
 * @spi: spi_device to register
 *
 * Companion function to spi_alloc_device.  Devices allocated with
 * spi_alloc_device can be added onto the spi bus with this function.
 *
 * Returns 0 on success; negative errno on failure
 */
int spi_add_device(struct spi_device *spi)
{
    static DEFINE_MUTEX(spi_add_lock);
    struct device *dev = spi->master->dev.parent;
    struct device *d;
    int status;

    /* Chipselects are numbered 0..max; validate. */
    if (spi->chip_select >= spi->master->num_chipselect) {
        dev_err(dev, "cs%d >= max %d\n",
            spi->chip_select,
            spi->master->num_chipselect);
        return -EINVAL;
    }

    /* Set the bus ID string */
    dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
            spi->chip_select);


    /* We need to make sure there's no other device with this
     * chipselect **BEFORE** we call setup(), else we'll trash
     * its configuration.  Lock against concurrent add() calls.
     */
    mutex_lock(&spi_add_lock);

    d = bus_find_device_by_name(&spi_bus_type, NULL, dev_name(&spi->dev));
    if (d != NULL) {
        dev_err(dev, "chipselect %d already in use\n",
                spi->chip_select);
        put_device(d);
        status = -EBUSY;
        goto done;
    }

    /* Drivers may modify this initial i/o setup, but will
     * normally rely on the device being setup.  Devices
     * using SPI_CS_HIGH can't coexist well otherwise...
     */
    status = spi_setup(spi);
    if (status < 0) {
        dev_err(dev, "can't setup %s, status %d\n",
                dev_name(&spi->dev), status);
        goto done;
    }

    /* Device may be bound to an active driver when this returns */
    status = device_add(&spi->dev);
    if (status < 0)
        dev_err(dev, "can't add %s, status %d\n",
                dev_name(&spi->dev), status);
    else
        dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));

done:
    mutex_unlock(&spi_add_lock);
    return status;
}
EXPORT_SYMBOL_GPL(spi_add_device);

/* Core methods for SPI master protocol drivers.  Some of the
 * other core methods are currently defined as inline functions.
 */

/**
 * spi_setup - setup SPI mode and clock rate
 * @spi: the device whose settings are being modified
 * Context: can sleep, and no requests are queued to the device
 *
 * SPI protocol drivers may need to update the transfer mode if the
 * device doesn't work with its default.  They may likewise need
 * to update clock rates or word sizes from initial values.  This function
 * changes those settings, and must be called from a context that can sleep.
 * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
 * effect the next time the device is selected and data is transferred to
 * or from it.  When this function returns, the spi device is deselected.
 *
 * Note that this call will fail if the protocol driver specifies an option
 * that the underlying controller or its driver does not support.  For
 * example, not all hardware supports wire transfers using nine bit words,
 * LSB-first wire encoding, or active-high chipselects.
 */
int spi_setup(struct spi_device *spi)
{
    unsigned    bad_bits;
    int        status;

    /* help drivers fail *cleanly* when they need options
     * that aren't supported with their current master
     */
    bad_bits = spi->mode & ~spi->master->mode_bits;
    if (bad_bits) {
        dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
            bad_bits);
        return -EINVAL;
    }

    if (!spi->bits_per_word)
        spi->bits_per_word = 8;

    status = spi->master->setup(spi);

    dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s"
                "%u bits/w, %u Hz max --> %d\n",
            (int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
            (spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
            (spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
            (spi->mode & SPI_3WIRE) ? "3wire, " : "",
            (spi->mode & SPI_LOOP) ? "loopback, " : "",
            spi->bits_per_word, spi->max_speed_hz,
            status);

    return status;
}
EXPORT_SYMBOL_GPL(spi_setup);

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/749214.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

InfluxDB下载安装教程

InfluxDB下载安装教程 一、简介二、【linux】InfluxDB下载安装配置2.1 下载安装2.1.1 apt在线安装2.1.2 离线安装 2.2 配置及启动 3、windows 下的安装方式4、InfluxDB基本使用4.1 创建用户4.2 数据库 回到目录 一、简介 InfluxDB是一个由InfluxData开发的开源时序型数据库。它…

串行通信——IIC和SPI应用场景区别

1.区别描述 SPI&#xff08;Serial Peripheral Interface&#xff09;和I2C&#xff08;Inter-Integrated Circuit&#xff0c;也称IC&#xff09;都是串行通信接口&#xff0c;但它们在应用上确实存在一些重叠之处&#xff0c;同时也各有特点和适用场景&#xff1a; SPI的主…

软件之禅(十)数据库

黄国强 2024/03/16 说点题外话&#xff0c;写程序是个非常有意思的智力游戏&#xff0c;想到业内很多人把这么一个智力游戏变成体力劳动&#xff0c;颇有些唏嘘。 回到正题&#xff0c;继续我对软件的思考。我是80年代的大学生&#xff0c;当时学的是dBASE数据库。毕业…

前端之CSS 创建css--行内引入、内联样式、外联样式

创建css有三种创建样式&#xff0c;行内引入、内联引入、外联引入。 行内引入 在行内标签引入 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>行内样式</title> </head> <body>…

php中 0 == ‘’(0等于任意字符串) 判断是否成立 返回true

php中不同类型变量之间比较大小 一、背景二、探究0是为什么&#xff1f;三、探究 0all是为什么&#xff1f;四、程序中如何判断0是否等于指定字符串 一、背景 最近在项目实际开发中&#xff0c;我需要判断前端传来的参数值是否等于一个字符串&#xff1b;然后发现当参数值是0时…

element-plus怎么修改表单中的label字体颜色及大小

问题描述&#xff1a; 当我们在vue3中使用element-plus组件库提供的表单组件时&#xff0c;有时我们需要修改表单中label的字体颜色等属性&#xff0c;这是如果直接选中label的class进行修改是不起作用的&#xff0c;我们只需深度选择即可选中并进行修改。 比如&#xff1a; …

IO Watch:用 Arduino UNO 制造的可编程手表

MAKER:mblaz/译:趣无尽 Cherry(转载请注明出处) 关于手表的项目,之前我们已经介绍过一款《Arduino + 3D 打印 DIY 电子手表》。本期的项目同样的一款基于 Arduino UNO 的可编程的手表,相比之下制造门槛更高一些。同时它更成熟、实用,外形也很有设计感,非常的漂亮! 这…

【打工日常】使用Docker部署团队协作文档工具

一、ShowDoc介绍 ​ShowDoc是一个适合IT团队共同协作API文档、技术文档的工具。通过showdoc&#xff0c;可以方便地使用markdown语法来书写出API文档、数据字典文档、技术文档、在线excel文档等等。 响应式网页设计&#xff1a;可将项目文档分享到电脑或移动设备查看。同时也可…

vue2中 因响应式原理采用Object.defineProperty数据劫持 导致几种方式改变数据页面 不重新渲染的解决办法

1. vue2 中通过索引修改数组数据不会重新渲染页面 使用数组方法可重新渲染页面 <template><div><ul><li v-for"item in names" :key"item">{{ item }}</li></ul><div><button click"replaceRoles"…

WXML 模板语法

数据绑定 1. 数据绑定的基本原则 ① 在 data 中定义数据 在页面对应的 .js 文件中&#xff0c;把数据定义到 data 对象中即可 ② 在 WXML 中使用数据 2. Mustache 语法的格式 把 data 中的数据绑定到页面中渲染&#xff0c;使用 Mustache 语法&#xff08;双大括号&#x…

SpringBoot jar包在后台运行,关闭cmd窗口程序不关闭

如果你想在运行 jar 文件后保留命令行窗口不关闭&#xff0c;你可以在运行 jar 文件时在命令行中使用 pause 命令。例如&#xff1a; java -jar myjarfile.jar pause 1 2 3 这样&#xff0c;在 jar 文件运行完后&#xff0c;命令行窗口会暂停&#xff0c;并显示一…

C++中如何引用一个已经定义过的全局变量?

在C或C中&#xff0c;要引用一个已经定义过的全局变量&#xff0c;你需要确保几件事情&#xff1a; 全局变量需要在引用它之前已经被定义。通常&#xff0c;全局变量定义在函数之外&#xff0c;可能是在文件的开始部分&#xff0c;或者在一个单独的头文件中。如果全局变量定义…

三次握手seq和ack的流程 TCP协议栈seq和ack深层理解

☆ 大家可以把想了解的问题在评论发给我?我会根据问题补充到后面 ☆ 三次握手seq和ack的流程 是的,在TCP/IP协议中,三次握手过程确实涉及到序列号(Sequence Number, 简称Seq)和确认号(Acknowledgment Number, 简称Ack)的交换。这个过程是为了建立可靠的连接,确保数据能…

Spring Data访问 MongoDB(十六)----CDI集成

存储库接口的实例通常由容器创建&#xff0c;在使用Spring Data时&#xff0c;Spring是最自然的选择。从1.3.0版本开始&#xff0c;Spring Data MongoDB附带了一个自定义的CDI扩展&#xff0c;允许你在CDI环境中使用存储库抽象。扩展是JAR的一部分。要激活它&#xff0c;请将Sp…

对OceanBase进行 sysbench 压测前,如何用 obdiag巡检

有一些用户想对 OceanBase 进行 sysbench 压测&#xff0c;并向我询问是否需要对数据库的各种参数进行调整。我想起有一个工具 obdiag &#xff0c;具备对集群进行巡检的功能。因此&#xff0c;我正好借此机会试用一下这个工具。 obdiag 功能的比较丰富&#xff0c;详细情况可参…

【设计模式】Java 设计模式之单例模式(Singleton Pattern)

一、单例模式概述 单例模式是一种创建型设计模式&#xff0c;它确保一个类仅有一个实例&#xff0c;并提供一个全局访问点来访问这个唯一实例。在软件设计中&#xff0c;单例模式常用于管理那些只需要一个实例的类&#xff0c;如配置信息类、数据库连接池等。 二、单例模式结…

Redis热点数据和冷数据的理解

热点数据&#xff0c;缓存才有价值 对于冷数据而言&#xff0c;大部分数据可能还没有再次访问到就已经被挤出内存&#xff0c; 不仅占用内存&#xff0c;而且价值不大。频繁修改的数据&#xff0c;看情况考虑使用缓存 对于上面两个例子&#xff0c;寿星列 表、导航信息都存在一…

linux网络服务学习(1):nfs

1.什么是nfs NFS&#xff1a;网络文件系统。 *让客户端通过网络访问服务器磁盘中的数据&#xff0c;是一种在linux系统间磁盘文件共享的方法。 *nfs客户端可以把远端nfs服务器的目录挂载到本地。 *nfs服务器一般用来共享视频、图片等静态数据。一般是作为被读取的对象&…

F5怎么样?保障AI服务的安全性和交付

伴随着人工智能时代的快速发展&#xff0c;AI已成为企业数字化转型的得力工具&#xff0c;比如为用户提供更好的服务&#xff0c;降低企业成本等。与此同时&#xff0c;AI技术的应用也会带来应用安全等方面的新风险&#xff0c;可见其有着双刃剑效应。作为一家提供多云应用安全…

【C++】map与set容器的应用总结

当我们处理数据时&#xff0c;有时需要使用一些高效的数据结构来存储和管理元素。在C中&#xff0c;我们有许多与此相关的容器类&#xff0c;如 树型结构:set&#xff0c;map&#xff0c;multiset&#xff0c;multimap; 哈希结构: unordered_set和unordered_map。这些容器提供了…