腾讯春招后端一面(八股篇)

前言

前几天在网上发了腾讯面试官问的一些问题,好多小伙伴关注,今天对这些问题写个具体答案,博主好久没看八股了,正好复习一下。

面试手撕了三道算法,这部分之后更,喜欢的小伙伴可以留意一下我的账号。

1.讲一下数据库的事物特性和底层原理

四大特性

⑴ 原子性(Atomicity)

  原子性是指事务包含的所有操作要么全部成功,要么全部失败回滚,这和前面两篇博客介绍事务的功能是一样的概念,因此事务的操作如果成功就必须要完全应用到数据库,如果操作失败则不能对数据库有任何影响。

⑵ 一致性(Consistency)

  一致性是指事务必须使数据库从一个一致性状态变换到另一个一致性状态,也就是说一个事务执行之前和执行之后都必须处于一致性状态。

        转账来说,假设用户A和用户B两者的钱加起来一共是5000,那么不管A和B之间如何转账,转几次账,事务结束后两个用户的钱相加起来应该还得是5000,这就是事务的一致性。

⑶ 隔离性(Isolation)

  隔离性是当多个用户并发访问数据库时,比如操作同一张表时,数据库为每一个用户开启的事务,不能被其他事务的操作所干扰,多个并发事务之间要相互隔离。

  即要达到这么一种效果:对于任意两个并发的事务T1和T2,在事务T1看来,T2要么在T1开始之前就已经结束,要么在T1结束之后才开始,这样每个事务都感觉不到有其他事务在并发地执行。

⑷ 持久性(Durability)

  持久性是指一个事务一旦被提交了,那么对数据库中的数据的改变就是永久性的,即便是在数

原理

数据库系统是通过并发控制技术和日志恢复技术来避免这种情况发生的。

并发控制技术:

并发控制技术是实现事务隔离性以及不同隔离级别的关键,实现方式有很多,按照其对可能冲突的操作采取的不同策略可以分为乐观并发控制和悲观并发控制两大类。

  • 乐观并发控制:对于并发执行可能冲突的操作,假定其不会真的冲突,允许并发执行,直到真正发生冲突时才去解决冲突,比如让事务回滚。

  • 悲观并发控制:对于并发执行可能冲突的操作,假定其必定发生冲突,通过让事务等待(锁)或者中止(时间戳排序)的方式使并行的操作串行执行。

我们这里介绍基于悲观锁的机制:

核心思想:对于并发可能冲突的操作,比如读-写,写-读,写-写,通过锁使它们互斥执行。
锁通常分为共享锁和排他锁两种类型

  • 1.共享锁(S):事务T对数据A加共享锁,其他事务只能对A加共享锁但不能加排他锁。
  • 2.排他锁(X):事务T对数据A加排他锁,其他事务对A既不能加共享锁也不能加排他锁

基于锁的并发控制流程:

  1. 事务根据自己对数据项进行的操作类型申请相应的锁(读申请共享锁,写申请排他锁)

  2. 申请锁的请求被发送给锁管理器。锁管理器根据当前数据项是否已经有锁以及申请的和持有的锁是否冲突决定是否为该请求授予锁。

  3. 若锁被授予,则申请锁的事务可以继续执行;若被拒绝,则申请锁的事务将进行等待,直到锁被其他事务释放。

可能出现的问题:

  • 死锁:多个事务持有锁并互相循环等待其他事务的锁导致所有事务都无法继续执行。

  • 饥饿:数据项A一直被加共享锁,导致事务一直无法获取A的排他锁。

对于可能发生冲突的并发操作,锁使它们由并行变为串行执行,是一种悲观的并发控制。

日志恢复技术

日志恢复技术保证了事务的原子性,使一致性状态不会因事务或系统故障被破坏。同时使已提交的对数据库的修改不会因系统崩溃而丢失,保证了事务的持久性。

  • 撤销事务undo:将事务更新的所有数据项恢复为日志中的旧值

  • 重做事务redo:将事务更新的所有数据项恢复为日志中的新值。

2.讲一下数据库的隔离级别

① Serializable (串行化):可避免脏读、不可重复读、幻读的发生。

② Repeatable read (可重复读):可避免脏读、不可重复读的发生。

③ Read committed (读已提交):可避免脏读的发生。

④ Read uncommitted (读未提交):最低级别,任何情况都无法保证。

3.讲一下数据库的的索引机制

索引(index)是帮助MySQL高效获取数据的数据结构(有序),提高数据检索的效率,降低数据库的IO成本(不需要全表扫描),通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。

MySQLInnoDB引擎采用的B+树的数据结构来存储索引,b+树阶数更多,路径更短,磁盘读写代价B+树更低,非叶子节点只存储指针,叶子阶段存储数据,B+树便于扫库和区间查询,叶子节点是一个双向链表

4.说一下Redis和MySQL数据同步的方案

延时双删策略

在写库前后都进行redis.del(key)操作,并且设定合理的超时时间。

为什么在写入之后还要删除?

因为写入之前可以有读请求读到了未修正的数据,然后写入了缓存,这个时候缓存和真实数据不一致,但是读请求只会读到缓存就返回数据,造成数据更新不及时

异步更新缓存(基于订阅binlog的同步机制)

MySQL binlog增量订阅消费+消息队列+增量数据更新到redis

  • 读Redis:热数据基本都在Redis
  • 写MySQL:增删改都是操作MySQL
  • 更新Redis数据:MySQ的数据操作binlog,来更新到Redis

5.讲一下向某个网站从发送请求到收到数据这个过程中发生了什么。

1.浏览器中输入网址。

2.通过DNS解析域名的实际IP地址

DNS 解析首先会从你的浏览器的缓存中去寻找是否有这个网址对应的 IP 地址,如果没有就向OS系统的 DNS 缓存中寻找,如果没有就是路由器的 DNS 缓存, 如果没有就是 ISP 的DNS 缓存中寻找。

3.与 WEB 服务器建立 TCP 连接。

TCP 协议通过三次握手建立连接。

  • 客户端通过 SYN 报文段发送连接请求,确定服务端是否开启端口准备连接。状态设置为 SYN_SEND;
  • 服务器如果有开着的端口并且决定接受连接,就会返回一个 SYN+ACK 报文段给客户端,状态设置为 SYN_RECV
  • 客户端收到服务器的 SYN+ACK 报文段,向服务器发送 ACK 报文段表示确认。此时客户端和服务器都设置为 ESTABLISHED 状态。连接建立,可以开始数据传输了。

4.若协议是https则会做加密

5.浏览器发送请求获取页面html

6.服务器响应html

7.浏览器解析 HTML

8.浏览器渲染页面

6.讲一下进程与线程的区别,以及你对操作系统的理解

进程是对运行时程序的封装,是系统进行资源调度和分配的的基本单位,实现了操作系统的并发;

线程是进程的子任务,是CPU调度和分派的基本单位,用于保证程序的实时性,实现进程内部的并发;线程是操作系统可识别的最小执行和调度单位。每个线程都独自占用一个虚拟处理器:独自的寄存器组,指令计数器和处理器状态。每个线程完成不同的任务,但是共享同一地址空间(也就是同样的动态内存,映射文件,目标代码等等),打开的文件队列和其他内核资源。

7.线程如何数据交互,进程如何数据交互?

线程的数据交互

锁机制:包括互斥锁、条件变量、读写锁

  • 互斥锁提供了以排他方式防止数据结构被并发修改的方法。
  • 读写锁允许多个线程同时读共享数据,而对写操作是互斥的。
  • 条件变量可以以原子的方式阻塞进程,直到某个特定条件为真为止。对条件的测试是在互斥锁的保护下进行的。条件变量始终与互斥锁一起使用。

信号量机制(Semaphore):包括无名线程信号量和命名线程信号量

信号机制(Signal):类似进程间的信号处理

进程的数据交互

管道( pipe ):

管道是一种半双工的通信方式,数据只能单向流动,而且只能在具有亲缘关系的进程间使用。进程的亲缘关系通常是指父子进程关系。

有名管道 (namedpipe) :

有名管道也是半双工的通信方式,但是它允许无亲缘关系进程间的通信。

信号量(semophore ) :

信号量是一个计数器,可以用来控制多个进程对共享资源的访问。它常作为一种锁机制,防止某进程正在访问共享资源时,其他进程也访问该资源。因此,主要作为进程间以及同一进程内不同线程之间的同步手段。

消息队列( messagequeue ) :

消息队列是由消息的链表,存放在内核中并由消息队列标识符标识。消息队列克服了信号传递信息少、管道只能承载无格式字节流以及缓冲区大小受限等缺点。

信号 (sinal ) :

信号是一种比较复杂的通信方式,用于通知接收进程某个事件已经发生。

共享内存(shared memory ) :

共享内存就是映射一段能被其他进程所访问的内存,这段共享内存由一个进程创建,但多个进程都可以访问。共享内存是最快的 IPC 方式,它是针对其他进程间通信方式运行效率低而专门设计的。它往往与其他通信机制,如信号两,配合使用,来实现进程间的同步和通信。

套接字(socket ) :

套接口也是一种进程间通信机制,与其他通信机制不同的是,它可用于不同设备及其间的进程通信。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/748679.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ElementUI Message 消息提示,多个显示被覆盖的问题

现象截图&#xff1a; 代码&#xff1a;主要是在this.$message 方法外层加上 setTimeout 方法 <script> export default {name: "HelloWorld",props: {msg: String,},methods: {showMessage() {for (let i 0; i < 10; i) {setTimeout(() > {this.$mess…

《荒野大镖客》等优秀的国产游戏能成为国产3a的标杆吗

中国或许不需要3A&#xff0c;但对于一些玩家来说&#xff0c;国产3A更多的是一个梦想&#xff0c;就像动画爱好者期待的优秀国产2D动画一样。 提问者所说的“玩家众多”&#xff0c;其实非核心玩家占比很高。 其中有一些是《王者荣耀》、《和平精英》等轻手游玩家或者国内二次…

yolov8 分割 模型 网络 模块图

下图是使用yolov8n-seg-p6.yaml imgsz1472 类别数2的情况下训练得到的静态导出的onnx文件使用netron工具可视化的结果 简单标注了yolov8n-seg-p6.yaml配置文件中各层和netron工具可视化的结果的对应关系

图解缓存淘汰算法 LRU、LFU | 最近最少使用、最不经常使用算法 | go语言实现

写在前面 无论是什么系统&#xff0c;在研发的过程中不可避免的会使用到缓存&#xff0c;而缓存一般来说我们不会永久存储&#xff0c;但是缓存的内容是有限的&#xff0c;那么我们如何在有限的内存空间中&#xff0c;尽可能的保留有效的缓存信息呢&#xff1f; 那么我们就可以…

前端基础——HTML傻瓜式入门(2)

该文章Github地址&#xff1a;https://github.com/AntonyCheng/html-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.c…

C/C++程序设计实验报告3 | 数组实验

本文整理自博主本科大一《C/C程序设计》专业课的课内实验报告&#xff0c;适合C语言初学者们学习、练习。 编译器&#xff1a;gcc 10.3.0 ---- 注&#xff1a; 1.虽然课程名为C程序设计&#xff0c;但实际上当时校内该课的内容大部分其实都是C语言&#xff0c;C的元素最多可能只…

stm32学习——串口通信中的奇偶校验位

常用的校验算法有奇偶校验、校验和、CRC&#xff0c;还有LRC、BCC等不常用的校验算法。 以串口通讯中的奇校验为例&#xff0c;如果数据中1的个数为奇数&#xff0c;则奇校验位0&#xff0c;否则为1。 例如原始数据为&#xff1a;0001 0011&#xff0c;数据中1的个数&#xf…

HarmonyOS NEXT星河版——还是Android上套个壳吗?

这真的是我2024年听过最搞笑的话,就在前几天&#xff0c;居然还有人说鸿蒙OS就是安卓套个壳&#xff0c;简直无语&#xff01; 你敢相信&#xff1f;就在前几天&#xff0c;我还听到有人说&#xff1a;鸿蒙os就是安卓上套一个壳。唉&#xff0c;我真是无语了。 哎&#xff0c…

如何在Windows11上通过PHPStudy小皮面板快速大家MySQL环境

首先&#xff0c;下载小皮面板&#xff1a;https://www.xp.cn/ 点Windows版本&#xff1a; 开始下载&#xff1a; 或者直接从百度网盘下载&#xff1a; 链接&#xff1a;https://pan.baidu.com/s/1gcaiK54yW7DcrYld22V06A 提取码&#xff1a;4oj8 –来自百度网盘超级会员V9…

【力扣】141. 环形链表

题目描述 给你一个链表的头节点 head &#xff0c;判断链表中是否有环。 如果链表中有某个节点&#xff0c;可以通过连续跟踪 next 指针再次到达&#xff0c;则链表中存在环。 为了表示给定链表中的环&#xff0c;评测系统内部使用整数 pos 来表示链表尾连接到链表中的位置&a…

Docker配置Nginx、tomcat、elasticsearch

配置nginx 需要先pull下来 #启动nginx -d 表示后台运行 -p 表示暴露端口&#xff0c;将80暴露为3344 [rootiZf8zhsqf64x47n1tpdy6oZ home]# docker run -d -p:3344:80 nginx 5dd62cea7681975d37d1a9867bc9776de0206519f624b461346ac83025656642 [rootiZf8zhsqf64x47n1tpdy6oZ…

Spark-Transformation以及Action开发实战

文章目录 创建RDDTransformation以及ActionTransformation开发Action开发RDD持久化共享变量创建RDD RDD是Spark的编程核心,在进行Spark编程是,首要任务就是创建一个初始的RDDSpark提供三种创建RDD方式:集合、本地文件、HDFS文件 集合:主要用于本地测试,在实际部署到集群运…

51-31 VastGaussian,3D高斯大型场景重建

2024 年 2 月&#xff0c;清华大学、华为和中科院联合发布的 VastGaussian 模型&#xff0c;实现了基于 3D Gaussian Splatting 进行大型场景高保真重建和实时渲染。 Abstract 现有基于NeRF大型场景重建方法&#xff0c;往往在视觉质量和渲染速度方面存在局限性。虽然最近 3D…

C++第五弹---类与对象(二)

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】 类与对象 1、类对象模型 1.1、如何计算类对象的大小 1.2、类对象的存储方式猜测 1.3、结构体内存对齐规则 2、this指针 2.1、this指针的引出 2.2…

Cesium 获取 3dtileset的包围盒各顶点坐标

Cesium 获取 3dtileset的包围盒各顶点坐标 /*** 获取 3dtileset的包围盒各顶点坐标, z 方向取高度最低的位置* param {*} tileset* param {*} options* returns* ref https://blog.csdn.net/STANDBYF/article/details/135012273* ref https://community.cesium.com/t/accurate-…

双指针算法_移动零_

题目&#xff1a; 给定一个数组 num &#xff0c;编写一个函数将数组内部的数字0都移动到数组的末尾&#xff0c;同时保持非零元素的相对顺序&#xff01; 同时不能通过复制数组&#xff0c;开辟新的数组空间的情况下原地对数组进行操作 示例&#xff1a; 本题的原理&#x…

【New Release】PostgreSQL小版本(16.2, 15.6, 14.11, 13.14,12.18) 发布了

前言 PostgreSQL遵循小版本的发布规律&#xff0c;这一个季度的小版本又发布了。可以算作是2024年第一个季度的版本发布。如果总结其规律&#xff1a;大概就是2月、5月、8月、11月的样子。通常因为11月配合大版本的发布&#xff0c;它是起点&#xff0c;也有可能就是终点。起点…

Docker 中 Nginx 反向代理

本文主角&#xff1a;Nginx Proxy Manager 。 使用docker安装Nginx Proxy Manager。 1、找到C:\Windows\System32\drivers\etc下的hosts文件&#xff0c;添加 “域名 IP"即可。 使用vscode编辑文件&#xff0c;保存时会提示用管理员权限保存即可。 2、Nginx Proxy Mana…

力扣大厂热门面试算法题 36-38

36. 有效的数独&#xff0c;37. 解数独&#xff0c;38. 外观数列&#xff0c;每题做详细思路梳理&#xff0c;配套Python&Java双语代码&#xff0c; 2024.03.16 可通过leetcode所有测试用例。 目录 36. 有效的数独 解题思路 完整代码 Java Python 37. 解数独 解题思…

nmcli --help(nmcli -h)nmcli文档、nmcli手册

文章目录 nmcli --helpOPTION解释OBJECT解释1. g[eneral]&#xff1a;查看NetworkManager的状态2. n[etworking]&#xff1a;启用或禁用网络3. r[adio]&#xff1a;查看无线电状态&#xff08;例如&#xff0c;Wi-Fi&#xff09;4. c[onnection]&#xff1a;列出所有的网络连接…