中电金信:技术实践|Flink维度表关联方案解析

导语:Flink是一个对有界和无界数据流进行状态计算的分布式处理引擎和框架,主要用来处理流式数据。它既可以处理有界的批量数据集,也可以处理无界的实时流数据,为批处理和流处理提供了统一编程模型。

维度表可以看作是用户来分析数据的窗口,它区别于事实表业务真实发生的数据,通常用来表示业务属性,以便为分析者提供有用的信息。在实际场景中,由于数据是实时变化的,因此需要通过将维度表进行关联,来保证业务的时效性和稳定性。本文主要围绕Flink维度表关联方案进行论述,分析不同关联方案的作用和特点,与各位读者共飨。

维度表与事实表的关联是数据分析中常见的一种分析方式,在传统数仓系统中,由于数据是有界的,因此关联实现相对简单。但是在实时系统或实时数仓中,数据是无界的,关联时需要考虑的问题就会复杂很多,如数据迟到导致的关联结果不准确、缓存数据消耗资源过大等等。

在典型的实时系统中,维表数据一般来源于源系统的OLTP数据库中,采用CDC技术将维表数据实时采集到Kafka或其他消息队列,最后保存到HBase、Hudi、Redis等组件中供数据分析使用。一个比较常见的架构图如下:

Flink维度表关联有多种方案,包括实时lookup数据库关联、预加载维表关联、广播维度表、Temporal Table Function Join等。每种方案都有各自的特点,需要结合实际情况综合判断,维表关联方案主要考虑的因素有如下几个方面:

■ 实现复杂度:实现维表关联复杂度越低越好

■ 数据库负载:随着事实表数据量增大,数据库吞吐量能否满足,数据库负载能否支撑

■ 维表更新实时性:维表更新后,新的数据能否及时被应用到

■ 内存消耗:是否占用太多内存

■ 横向扩展:随着数据量增大,能否横向扩展

■ 结果确定性:结果的正确性是否能够保证

01 实时lookup数据库关联

所谓实时lookup数据库关联,就是在用户自定义函数中通过关联字段直接访问数据库实现关联的方式。每条事实表数据都会根据关联键,到存储维度表的数据库中查询一次。

实时lookup数据库关联的特点是实现简单,但数据库压力较大,无法支撑大数据量的维度数据查询,并且在查询时只能根据当时的维度表数据查询,如果事实表数据重放或延迟,查询结果的正确性无法得到保证,且多次查询结果可能不一致。

实时lookup数据库关联还可以再细分为三种方式:同步lookup数据库关联、异步lookup数据库关联和带缓存的数据库lookup关联。

1.1 同步lookup数据库关联

同步实时数据库lookup关联实现最简单,只需要在一个RichMapFunction或者RichFlat-MapFunction中访问数据库,处理好关联逻辑后将结果数据输出即可。上游每输入一条数据就会前往外部表中查询一次,等待返回后输出关联结果。

同步lookup数据库关联的参考代码如下:

创建类并继承RichMapFunction抽象类。

public class HBaseMapJoinFun extends RichMapFunction<Tuple2<String,String>,Tuple3<String,String,String>> {

在open方法中实现连接数据库(该数据库存储了维度表信息)。

public void open(Configuration parameters) throws Exception {org.apache.hadoop.conf.Configuration hconf= HBaseConfiguration.create();InputStream hbaseConf = DimSource.class.getClassLoader().getResourceAsStream("hbase-site.xml");InputStream hdfsConf = DimSource.class.getClassLoader().getResourceAsStream("hdfs-site.xml");InputStream coreConf = DimSource.class.getClassLoader().getResourceAsStream("core-site.xml");hconf.addResource(hdfsConf);hconf.addResource(hbaseConf);hconf.addResource(coreConf);if (User.isHBaseSecurityEnabled(hconf)){String userName = "dl_rt";String keyTabFile = "/opt/kerberos/kerberos-keytab/keytab";LoginUtil.setJaasConf(ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME, userName, keyTabFile);}else {LOG.error("conf load error!");}connection = ConnectionFactory.createConnection(hconf);
}

在map方法中实现关联操作,并返回结果。

@Override
public Tuple3<String, String, String> map(Tuple2<String, String> stringStringTuple2) throws Exception LOG.info("Search hbase data by key .");String row_key = stringStringTuple2.f1;String p_name = stringStringTuple2.f0;byte[] familyName = Bytes.toBytes("cf");byte[] qualifier = Bytes.toBytes("city_name");byte[] rowKey = Bytes.toBytes(row_key);table = connection.getTable(TableName.valueOf(table_name));Get get = new Get(rowKey);get.addColumn(familyName,qualifier);Result result = table.get(get);for (Cell cell : result.rawCells()){LOG.info("{}:{}:{}",Bytes.toString(CellUtil.cloneRow(cell)),Bytes.toString(CellUtil.cloneFamily(cell)),Bytes.toString(CellUtil.cloneQualifier(cell)),Bytes.toString(CellUtil.cloneValue(cell)));}String cityName = Bytes.toString(result.getValue(Bytes.toBytes("cf"),Bytes.toBytes("city_name")));return new Tuple3<String, String, String>(row_key,p_name,cityName);
}

在主类中调用。

//关联维度表
SingleOutputStreamOperator<Tuple3<String,String,String>> resultStream = dataSource.map(new HBaseMapJoinFun());
resultStream.print().setParallelism(1);

1.2 异步lookup数据库关联

异步实时数据库lookup关联需要借助AsyncIO来异步访问维表数据。AsyncIO可以充分利用数据库提供的异步Client库并发处理lookup请求,提高Task并行实例的吞吐量。

相较于同步lookup,异步方式可大大提高数据库查询的吞吐量,但相应的也会加大数据库的负载,并且由于查询只能查当前时间点的维度数据,因此可能造成数据查询结果的不准确。

AsyncIO提供lookup结果的有序和无序输出,由用户自己选择是否保证event的顺序。

示例代码参考如下:

创建Join类并继承RichAsyncFunction抽象类。

public class HBaseAyncJoinFun extends RichAsyncFunction<Tuple2<String,String>, Tuple3<String,String,String>> {

在open方法中实现连接数据库(存储了维度表的信息)。

public void open(Configuration parameters) throws Exception {org.apache.hadoop.conf.Configuration hconf= HBaseConfiguration.create();InputStream hbaseConf = DimSource.class.getClassLoader().getResourceAsStream("hbase-site.xml");InputStream hdfsConf = DimSource.class.getClassLoader().getResourceAsStream("hdfs-site.xml");InputStream coreConf = DimSource.class.getClassLoader().getResourceAsStream("core-site.xml");hconf.addResource(hdfsConf);hconf.addResource(hbaseConf);hconf.addResource(coreConf);if (User.isHBaseSecurityEnabled(hconf)){String userName = "dl_rt";String keyTabFile = "/opt/kerberos/kerberos-keytab/keytab";LoginUtil.setJaasConf(ZOOKEEPER_DEFAULT_LOGIN_CONTEXT_NAME, userName, keyTabFile);}else {LOG.error("conf load error!");}final ExecutorService threadPool = Executors.newFixedThreadPool(2,new ExecutorThreadFactory("hbase-aysnc-lookup-worker", Threads.LOGGING_EXCEPTION_HANDLER));try{connection = ConnectionFactory.createAsyncConnection(hconf).get();table=connection.getTable(TableName.valueOf(table_name),threadPool);}catch (InterruptedException | ExecutionException e){LOG.error("Exception while creating connection to HBase.",e);throw new RuntimeException("Cannot create connection to HBase.",e);}

在AsyncInvoke方法中实现异步关联,并返回结果。

@Override
public void asyncInvoke(Tuple2<String, String> input, ResultFuture<Tuple3<String, String, String>> resultFuture) throws Exception {LOG.info("Search hbase data by key .");String row_key = input.f1;String p_name = input.f0;byte[] familyName = Bytes.toBytes("cf");byte[] qualifier = Bytes.toBytes("city_name");byte[] rowKey = Bytes.toBytes(row_key);Get get = new Get(rowKey);get.addColumn(familyName,qualifier);CompletableFuture<Result> responseFuture = table.get(get);responseFuture.whenCompleteAsync((result, throwable) -> {if (throwable != null){if (throwable instanceof TableNotFoundException){LOG.error("Table '{}' not found", table_name,throwable);resultFuture.completeExceptionally(new RuntimeException("HBase table '"+table_name+"' not found.",throwable));}else {LOG.error(String.format("HBase asyncLookup error,retry times = %d",1),throwable);responseFuture.completeExceptionally(throwable);}}else{List list = new ArrayList<Tuple3<String, String, String>>();if (result.isEmpty()){String cityName="";list.add(new Tuple3<String,String,String>(row_key,p_name,cityName));resultFuture.complete(list);}else{String cityName = Bytes.toString(result.getValue(Bytes.toBytes("cf"),Bytes.toBytes("city_name")));list.add(new Tuple3<String,String,String>(row_key,p_name,cityName));resultFuture.complete(list);}}});}

在主方法中调用。

//异步关联维度表
DataStream<Tuple3<String,String,String>> unorderedResult = AsyncDataStream.unorderedWait(dataSource, new HBaseAyncJoinFun(),5000L, TimeUnit.MILLISECONDS,2).setParallelism(2);
unorderedResult.print();

此处使用unorderedWait方式,允许返回结果存在乱序。

1.3 带缓存的数据库lookup关联

带缓存的数据库lookup关联是对上述两种方式的优化,通过增加缓存机制来降低查询数据库的请求数量,而且缓存不需要通过 Checkpoint 机制持久化,可以采用本地缓存,例如Guava Cache可以比较轻松的实现。

此种方式的问题在于缓存的数据无法及时更新,可能会造成关联数据不正确的问题。

02 预加载维表关联

预加载维表关联是在作业启动时就把维表全部加载到内存中,因此此种方式只适用于维度表数据量不大的场景。相较于lookup方式,预加载维表可以获得更好的性能。

预加载维表关联还可以再细分为四种方式:启动时预加载维表、启动时预加载分区维表、启动时预加载维表并定时刷新和启动时预加载维表并实时lookup数据库。

预加载维表的各种细分方案可根据实际应用场景进行结合应用,以此来满足不同的场景需求。

2.1 启动时预加载维表

启动时预加载维表实现比较简单,作业初始化时,在用户函数的open方法中读取数据库的维表数据放到内存中,且缓存的维表数据不作为State,每次重启时open方法都被再次执行,从而加载新的维表数据。

此方法需要占用内存来存储维度表数据,不支持大数据量的维度表,且维度表加载入内存后不能实时更新,因此只适用于对维度表更新要求不高且数据量小的场景。

2.2 启动时预加载分区维表

对于维表比较大的情况,可以在启动预加载维表基础之上增加分区功能。简单来说就是将数据流按字段进行分区,然后每个Subtask只需要加在对应分区范围的维表数据。此种方式一定要自定义分区,不要用KeyBy。

2.3 启动时预加载维表并定时刷新

预加载维度数据只有在Job启动时才会加载维度表数据,这会导致维度数据变更无法被识别,在open方法中初始化一个额外的线程来定时更新内存中的维度表数据,可以一定程度上缓解维度表更新问题,但无法彻底解决。

示例代码参考如下:

public class ProLoadDimMap extends RichMapFunction<Tuple2<String,Integer>,Tuple2<String,String>> {private static final Logger LOG = LoggerFactory.getLogger(ProLoadDimMap.class.getName());ScheduledExecutorService executor = null;private Map<String,String> cache;@Overridepublic void open(Configuration parameters) throws Exception {executor.scheduleAtFixedRate(new Runnable() {@Overridepublic void run() {try {load();} catch (Exception e) {e.printStackTrace();}}},5,5, TimeUnit.MINUTES);//每隔 5 分钟拉取一次维表数据}@Overridepublic void close() throws Exception {}@Overridepublic Tuple2<String, String> map(Tuple2<String, Integer> stringIntegerTuple2) throws Exception {String username = stringIntegerTuple2.f0;Integer city_id = stringIntegerTuple2.f1;String cityName = cache.get(city_id.toString());return new Tuple2<String,String>(username,cityName);}public void load() throws Exception {Class.forName("com.mysql.jdbc.Driver");Connection con = DriverManager.getConnection("jdbc:mysql://172.XX.XX.XX:XX06/yumd?useSSL=false&characterEncoding=UTF-8", "root", "Root@123");PreparedStatement statement = con.prepareStatement("select city_id,city_name from city_dim;");ResultSet rs = statement.executeQuery();//全量更新维度数据到内存while (rs.next()) {String cityId = rs.getString("city_id");String cityName = rs.getString("city_name");cache.put(cityId, cityName);}con.close();}
}

2.4 启动时预加载维表并实时lookup数据库

此种方案就是将启动预加载维表和实时look两种方式混合使用,将预加载的维表作为缓存给实时lookup使用,未命中则到数据库里查找。该方案可解决关联不上的问题。

03 广播维度表

广播维度表方案是将维度表数据用流的方式接入Flink Job 程序,并将维度表数据进行广播,再与事件流数据进行关联,此种方式可以及时获取维度表的数据变更,但因数据保存在内存中,因此支持的维度表数据量较小。

示例代码参考如下:

首先将维度表进行广播。

//维度数据源
DataStream<Tuple2<Integer,String>> dimSource = env.addSource(new DimSource1());// 生成MapStateDescriptor
MapStateDescriptor<Integer,String> dimState = new MapStateDescriptor<Integer, String>("dimState",BasicTypeInfo.INT_TYPE_INFO,BasicTypeInfo.STRING_TYPE_INFO);
BroadcastStream<Tuple2<Integer,String>> broadcastStream = dimSource.broadcast(dimState);

实现BroadcastProcessFunction类的processElement方法处理事实流与广播流的关联,并返回关联结果。

SingleOutputStreamOperator<String> output = dataSource.connect(broadcastStream).process(new BroadcastProcessFunction<Tuple2<String, Integer>, Tuple2<Integer, String>, String>() {@Overridepublic void processElement(Tuple2<String, Integer> input, ReadOnlyContext readOnlyContext, Collector<String> collector) throws Exception {ReadOnlyBroadcastState<Integer,String> state = readOnlyContext.getBroadcastState(dimState);String name = input.f0;Integer city_id = input.f1;String city_name="NULL";if (state.contains(city_id)){city_name=state.get(city_id);collector.collect("result is : "+name+" ,"+city_id+" ,"+city_name);}}

实现BroadcastProcessFunction类的processBroadcastElement方法处理广播流数据,将新的维度表数据进行广播。

@Override
public void processBroadcastElement(Tuple2<Integer, String> input, Context context, Collector<String> collector) throws Exception {LOG.info("收到广播数据:"+input);context.getBroadcastState(dimState).put(input.f0,input.f1);
}

04 Temporal Table Function Join

Temporal Table Function Join仅支持在Flink SQL API中使用,需要将维度表数据作为流的方式传入Flink Job。该种方案可支持大数据量的维度表,且维度表更新及时,关联数据准确性更高,缺点是会占用状态后端和内存的资源,同时自行实现的代码复杂度过高。

Temporal Table是持续变化表上某一时刻的视图,Temporal Table Function是一个表函数,传递一个时间参数,返回Temporal Table这一指定时刻的视图。可以将维度数据流映射为Temporal Table,主流与这个Temporal Table进行关联,可以关联到某一个版本(历史上某一个时刻)的维度数据。

示例代码参考如下:

public class TemporalFunTest {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);EnvironmentSettings bsSettings = EnvironmentSettings.newInstance().inStreamingMode().build();StreamTableEnvironment tableEnv = StreamTableEnvironment.create(env, bsSettings);env.setParallelism(1);//定义主流DataStream<Tuple3<String,Integer,Long>> dataSource = env.addSource(new EventSource2()).assignTimestampsAndWatermarks(new BoundedOutOfOrdernessTimestampExtractor<Tuple3<String,Integer,Long>>(Time.seconds(0)){@Overridepublic long extractTimestamp(Tuple3<String, Integer, Long> stringIntegerLongTuple3) {return stringIntegerLongTuple3.f2;}});//定义维度流DataStream<Tuple3<Integer, String, Long>> cityStream = env.addSource(new DimSource()).assignTimestampsAndWatermarks(//指定水位线、时间戳new BoundedOutOfOrdernessTimestampExtractor<Tuple3<Integer, String, Long>>(Time.seconds(0)) {@Overridepublic long extractTimestamp(Tuple3<Integer, String, Long> element) {return element.f2;}});//主流,用户流, 格式为:user_name、city_id、tsTable userTable = tableEnv.fromDataStream(dataSource,"user_name,city_id,ts.rowtime");//定义城市维度流,格式为:city_id、city_name、tsTable cityTable = tableEnv.fromDataStream(cityStream,"city_id,city_name,ts.rowtime");tableEnv.createTemporaryView("userTable", userTable);tableEnv.createTemporaryView("cityTable", cityTable);//定义一个TemporalTableFunctionTemporalTableFunction dimCity = cityTable.createTemporalTableFunction("ts", "city_id");//注册表函数tableEnv.registerFunction("dimCity", dimCity);Table u = tableEnv.sqlQuery("select * from userTable");u.printSchema();tableEnv.toAppendStream(u, Row.class).print("user streaming receive : ");Table c = tableEnv.sqlQuery("select * from cityTable");c.printSchema();tableEnv.toAppendStream(c, Row.class).print("city streaming receive : ");//关联查询Table result = tableEnv.sqlQuery("select u.user_name,u.city_id,d.city_name,u.ts " +"from userTable as u " +", Lateral table (dimCity(u.ts)) d " +"where u.city_id=d.city_id");//打印输出DataStream resultDs = tableEnv.toAppendStream(result, Row.class);resultDs.print("\t\t join result out:");env.execute("joinDemo");}
}

最后,总结各种维度表关联方案的特点如下:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/748189.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript进阶:js的一些学习笔记-this指向,call,apply,bind,防抖,节流

文章目录 1. this指向1. 箭头函数 this的指向 2. 改变this的指向1. call()2. apply()3. bind() 3. 防抖和节流1. 防抖2. 节流 1. this指向 1. 箭头函数 this的指向 箭头函数默认帮我们绑定外层this的值&#xff0c;所以在箭头函数中this的值和外层的this是一样的箭头函数中的…

Spring-1

目录 概念 优点 Autowired和Resource关键字 相同点 不同点 依赖注入的三种方式 概念 Spring 是个java企业级应用的开源开发框架。Spring主要用来开发Java应用&#xff0c;但是有些扩展是针对构建J2EE&#xff08;Java平台企业版&#xff09;平台的web应用。Spring 框架目…

java-ssm-jsp-基于java的客户管理系统的设计与实现

java-ssm-jsp-基于java的客户管理系统的设计与实现 获取源码——》公主号&#xff1a;计算机专业毕设大全

自习室预订系统|基于springboot框架+ Mysql+Java+B/S架构的自习室预订系统设计与实现(可运行源码+数据库+设计文档+部署说明)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 学生功能模块 管理员功能登录前台功能效果图 系统功能设计 数据库E-R图设计 lunwen参…

DirectShowPlayerService::doSetUrlSource: Unresolved error code 0x800c000d

报出这个问题&#xff0c;应该是对给的url解析不正确&#xff0c;我给的是rtsp的视频流地址&#xff0c;应该是对该格式解析异常。 所以参考两篇文&#xff1a; QT无法播放视频&#xff1a;报错&#xff1a;DirectShowPlayerService::doRender: Unresolved error code 0x8004…

OCP NVME SSD规范解读-12.Telemetry日志要求

以NVME SSD为例&#xff0c;通常大家想到的是观察SMAR-log定位异常&#xff0c;但是这个信息在多数情况下无法只能支撑完整的定位链路。 定位能力的缺失和低效是数据中心问题解决最大的障碍。 为了解决这个问题&#xff0c;Meta的做法是推进OCP组织加入延迟记录页面。同时NVME协…

练习题手撕总结

基础篇 1.基础知识&#xff08;时间复杂度、空间复杂度等&#xff09; 2.线性表&#xff08;顺序表、单链表&#xff09; 3.双链表、循环链表 4.队列 5.栈 6.递归算法 7.树、二叉树&#xff08;递归、非递归遍历&#xff09; 8.二叉搜索树&#xff08;BST&#xff09; 9.二分查…

Android Studio实现内容丰富的安卓宠物医院管理系统

获取源码请点击文章末尾QQ名片联系&#xff0c;源码不免费&#xff0c;尊重创作&#xff0c;尊重劳动 项目编号128 1.开发环境android stuido jdk1.8 eclipse mysql tomcat 2.功能介绍 安卓端&#xff1a; 1.注册登录 2.系统公告 3.宠物社区&#xff08;可发布宠物帖子&#xf…

Boyer Moore 算法介绍

1. Boyer Moore 算法介绍 Boyer Moore 算法&#xff1a;简称为 BM 算法&#xff0c;是由它的两位发明者 Robert S. Boyer 和 J Strother Moore 的名字来命名的。BM 算法是他们在 1977 年提出的高效字符串搜索算法。在实际应用中&#xff0c;比 KMP 算法要快 3~5 倍。 BM 算法思…

数据结构 之 队列(Queue)

​​​​​​​ &#x1f389;欢迎大家观看AUGENSTERN_dc的文章(o゜▽゜)o☆✨✨ &#x1f389;感谢各位读者在百忙之中抽出时间来垂阅我的文章&#xff0c;我会尽我所能向的大家分享我的知识和经验&#x1f4d6; &#x1f389;希望我们在一篇篇的文章中能够共同进步&#xff0…

JAVA爬虫系列

目录 准备工作 yml 1.入门程序&#xff08;获取到静态页面&#xff09; 2.HttpClient---Get 2.1 修改成连接池 3.HttpClient---Get带参数 3.1 修改成连接池 4.HttpClient---Post 4.1 修改成连接池 5.HttpClient---Post带参数 6.HttpClient-连接池 7.设置请求信息 …

蓝桥真题——-小蓝重组质数(全排列和质数判断)

小蓝有一个十进制正整数n&#xff0c;其不包含数码0&#xff0c;现在小蓝可以任意打乱数码的顺序&#xff0c;小蓝想知道通过打乱数码顺序,n 可以变成多少个不同的质数。 #include <iostream> #include<bits/stdc.h> using namespace std; bool isprime(int n) {if…

讯鹏Andon系统解决方案帮助工厂打造生产过程透明化

在现代制造业中&#xff0c;高效透明的生产管理模式对企业的发展至关重要。Andon系统作为一种解决方案&#xff0c;通过软硬件结合的方式&#xff0c;为企业打造了高效透明的生产管理模式&#xff0c;帮助企业实现生产过程的优化和管理的可视化。 Andon系统的软硬件结合为企业提…

swiftUI中的可变属性和封装

swiftUI的可变属性 关于swift中的属性&#xff0c;声明常量使用let &#xff0c; 声明变量使用var 如果需要在swiftUI中更改视图变化那么就需要在 var前面加上state 。 通过挂载到state列表 &#xff0c;从而让xcode找到对应的改变的值 例子&#xff1a; import SwiftUIstruc…

【兆易创新GD32H759I-EVAL开发板】图像处理加速器(IPA)的应用

GD32H7系列的IPA&#xff08;Image Pixel Accelerator&#xff09;是一个高效的图像处理硬件加速器&#xff0c;专门设计用于加速图像处理操作&#xff0c;如像素格式转换、图像旋转、缩放等。它的优势在于能够利用硬件加速来实现这些操作&#xff0c;相比于软件实现&#xff0…

BLE---Service interoperability requirements

0 Preface/Foreword references: Bluetooth core specification V5.4 definition&#xff1a;定义 declaration&#xff1a;声明 1 service definition&#xff08;服务定义&#xff09; 服务定义&#xff08;definition&#xff09;&#xff1a;必须包含服务声明(declara…

【JavaScript】JavaScript 运算符 ① ( 运算符分类 | 算术运算符 | 浮点数 的 算术运算 精度问题 )

文章目录 一、JavaScript 运算符1、运算符分类2、算术运算符3、浮点数 的 算术运算 精度问题 一、JavaScript 运算符 1、运算符分类 在 JavaScript 中 , 运算符 又称为 " 操作符 " , 可以实现 赋值 , 比较 > < , 算术运算 -*/ 等功能 , 运算符功能主要分为以下…

MATLAB中visdiff函数用法

目录 语法 说明 示例 比较两个文件 比较两个文件并指定类型 发布比较报告 visdiff函数的功能是比较两个文件或文件夹。 语法 visdiff(filename1,filename2) visdiff(filename1,filename2,type) comparison visdiff(___) 说明 visdiff(filename1,filename2) 打开比较工…

海格里斯HEGERLS托盘搬运机器人四向车引领三维空间集群设备柔性运维

随着市场的不断迅猛发展变化&#xff0c;在物流仓储中&#xff0c;无论是国内还是海外&#xff0c;都对托盘式解决方案需求量很大。顾名思义&#xff0c;托盘式解决方案简单理解就是将产品放置在托盘上进行存储、搬运和拣选。 面对托盘式方案需求&#xff0c;行业中常见的方案是…

面试常问,ADC,PWM

一 PWM介绍 pwm全名&#xff08;Pulse Width Modulation&#xff09;&#xff1a;脉冲宽度调制 在具有惯性的系统中&#xff0c;可以通过对一系列脉冲的宽度进行调制&#xff0c;来等效地获得所需要的模拟参量&#xff0c;常应用于电机控速等领域。PWM一定程度上是数字到模拟…