《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》


🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁
🦄 博客首页——🐅🐾猫头虎的博客🎐
🐳 《面试题大全专栏》 🦕 文章图文并茂🦖生动形象🐅简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》 🐾 学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》 🐅 学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🐅🐾🍁🐥


文章目录

  • 《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》
    • 摘要
    • 引言
    • 正文
      • 1. Transformers结构简介
        • 1.1 自注意力机制
        • 1.2 并行处理
      • 2. GPT-4模型探索
        • 2.1 模型规模和能力
        • 2.2 应用领域
      • 3. Transformers和GPT-4的挑战与前景
    • 总结
    • 参考资料
  • 原创声明

《自然语言处理(NLP)的最新进展:Transformers与GPT-4的浅析》

摘要

🐯 猫头虎博主 为您详解:自然语言处理(NLP)如何在近年来取得令人瞩目的进展,尤其是借助于Transformers结构和GPT-4模型。本文将为您探索这些技术的核心原理、应用和未来趋势。 NLP最新技术Transformers原理GPT-4模型自然语言生成

引言

🚀 自然语言处理(NLP)一直是人工智能领域的一个核心研究方向。近年来,借助于深度学习和大量数据,NLP取得了巨大的进步。特别是Transformers结构和GPT-4模型,为NLP开启了一个新的篇章。

正文

1. Transformers结构简介

🔍 Transformers结构由Vaswani等人在2017年提出,现已成为NLP任务的主流模型结构。

在这里插入图片描述

1.1 自注意力机制

🌟 Transformers的核心是自注意力机制,它能够捕捉输入数据的长距离依赖关系。

import tensorflow as tf
from tensorflow.keras.layers import MultiHeadAttentionmha = MultiHeadAttention(num_heads=8, key_dim=2)
y = mha(query, value)  # query and value are 3D tensors

1.2 并行处理

⚡ 与传统的RNN和LSTM不同,Transformers可以并行处理所有输入标记,从而大大提高了计算效率。

2. GPT-4模型探索

在这里插入图片描述

🔍 GPT-4是OpenAI发布的一种大型预训练语言模型,基于Transformers结构。

2.1 模型规模和能力

📘 GPT-4具有数十亿的参数,并在多种NLP任务上达到了人类水平的性能。

2.2 应用领域

🌍 GPT-4广泛应用于文本生成、问答系统、机器翻译等领域。

3. Transformers和GPT-4的挑战与前景

🤔 尽管Transformers和GPT-4在NLP领域取得了巨大的成功,但它们仍然面临一些挑战,如计算成本高、模型解释性差等。

总结

😇 Transformers结构和GPT-4模型为自然语言处理领域带来了前所未有的机会和挑战。通过深入了解这些技术,我们可以更好地利用其潜力,推动NLP领域的进一步发展。

参考资料

  1. Attention Is All You Need | Vaswani et al.
  2. OpenAI’s GPT-4 Blog Post
  3. Transformers for Natural Language Processing | François Chollet
  4. Natural Language Processing Advances | Stanford University

👩‍💻 猫头虎博主期待与您下次的相遇!一起探索NLP的无限魅力!🌟🚀

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74787.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库

文章目录 openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库65.1 前提条件65.2 背景信息65.3 注意事项65.4 操作步骤65.4.1 创建数据库65.4.2 查看数据库65.4.3 修改数据库65.4.4 删除数据库 openGauss学习笔记-65 openGauss 数据库管理-创建和管理数据库 65.1 前提…

解决deepspeed框架的bug:不保存调度器状态,模型训练重启时学习率从头开始

deepspeed存在一个bug,即在训练时不保存调度器状态,因此如果训练中断后再重新开始训练,调度器还是会从头开始而不是接着上一个checkpoint的调度器状态来训练。这个bug在deepspeed的github中也有其他人提出:https://github.com/mic…

【广州华锐互动】AR技术在配电系统运维中的应用

随着科技的不断发展,AR(增强现实)技术逐渐走进了我们的生活。在电力行业,AR技术的应用也为巡检工作带来了许多新突破,提高了巡检效率和安全性。本文将从以下几个方面探讨AR配电系统运维系统的新突破。 首先,AR技术可以实现虚拟巡检…

Android Jetpack架构组件库:Hilt

一、开发者官网关于Hilt库使用链接如下 使用 Hilt 实现依赖项注入 Hilt版本说明 二、工程目录图 请点击下面工程名称,跳转到代码的仓库页面,将工程 下载下来 Demo Code 里有详细的注释 代码:LearnJetpack-hilt:hilt版本2.48 代…

Redis集群3.2.11离线安装详细版本(使用Ruby)

1.安装软件准备 1.Redis版本下载 Index of /releases/http://download.redis.io/releases/ 1.2gcc环境准备 GCC(GNU Compiler Collection,GNU编译器套件)是一套用于编译程序代码的开源编译器工具集。它的主要用途是将高级编程语言(如C、C++、Fortran等)编写的源代码转换…

【项目 计网12】4.32UDP通信实现 4.33广播 4.34组播 4.35本地套接字通信

文章目录 4.32UDP通信实现udp_client.cudp_server.c 4.33广播bro_server.cbro_client.c 4.34组播multi_server.cmulti_client.c 4.35本地套接字通信ipc_server.cipc_client.c 4.32UDP通信实现 udp_client.c #include <stdio.h> #include <stdlib.h> #include <…

vmware网卡(网络适配器)桥接、NAT、仅主机3种模式解析

Bridged&#xff08;桥接模式&#xff09;、NAT&#xff08;网络地址转换模式&#xff09;、Host-Only&#xff08;仅主机模式&#xff09; Windows系统安装好vmware后&#xff0c;在网络连接中会生成VMnet1和VMnet8两个虚拟网卡。 VMnet1作用于仅主机模式&#xff0c;VMnet8作…

目标检测笔记(十五): 使用YOLOX完成对图像的目标检测任务(从数据准备到训练测试部署的完整流程)

文章目录 一、目标检测介绍二、YOLOX介绍三、源码获取四、环境搭建4.1 环境检测 五、数据集准备六、模型训练七、模型验证八、模型测试 一、目标检测介绍 目标检测&#xff08;Object Detection&#xff09;是计算机视觉领域的一项重要技术&#xff0c;旨在识别图像或视频中的…

单元测试与自测

单元测试在百度百科的定义&#xff1a; 自测在百度百科的定义&#xff1a; 单元测试是测一个类或一个函数&#xff0c;自立门第main函数&#xff0c;不依赖于项目&#xff0c;预期的是这个类或函数是没有问题的。程序编码完成之后至各种测试再到用户使用一二十年出现的任何bug都…

娱乐时间 —— 用python将图片转为excel十字绘

最近看蛮多朋友在玩&#xff0c;要么只能画比较简单的&#xff0c;要么非常花时间。想了下本质上就是把excel对应的单元格涂色&#xff0c;如果能知道哪些格子要上什么颜色&#xff0c;用编程来实现图片转为excel十字绘应该是很方便的。 图片的每一个像素点都可以数值化&#x…

Jmeter如何设置中文版

第一步&#xff1a;找到 apache-jmeter-5.4.3\bin目录下的 jmeter.properties 第二步:打开 三&#xff0c;ctrf 输入languageen&#xff0c;注释掉&#xff0c;增加以行修改如下 四&#xff0c;ctrs 保存修改内容&#xff0c;重新打开jmeter就可以了

微信小程序Day2笔记

1、WXML模板语法 1. 数据绑定 数据绑定的基本原则 在data中定义数据在WXML中使用数据 2. 在data中定义页面的数据 在页面对应的.js文件中&#xff0c;把数据定义到data对象中。 3. Mustache语法的格式 把data中的数据绑定到页面中渲染&#xff0c;使用Mustache语法&…

PHP8中获取并删除数组中最后一个元素-PHP8知识详解

在php8中&#xff0c;array_pop()函数将返回数组的最后一个元素&#xff0c;并且将该元素从数组中删除。语法格式如下&#xff1a; array_pop(目标数组) 获取并删除数组中最后一个元素&#xff0c;参考代码&#xff1a; <?php $stu array(s001>明明,s002>亮亮,s…

【FPGA】通俗理解从VGA显示到HDMI显示

注&#xff1a;大部分参考内容来自“征途Pro《FPGA Verilog开发实战指南——基于Altera EP4CE10》2021.7.10&#xff08;上&#xff09;” 贴个下载地址&#xff1a; 野火FPGA-Altera-EP4CE10征途开发板_核心板 — 野火产品资料下载中心 文档 hdmi显示器驱动设计与验证 — …

前端list.push,封装多个对象

js var fruit [apple, banana];fruit.push(pear);console.log(fruit); // [apple, banana, pear]现在为对象 data1:{addUser: 1,editUser: 1,addTime: null,editTime: 1527410579000,userId: 3,systemNo: mc,userName: zengzhuo,userPassword: e10adc3949ba59abbe56e057f20f88…

【广州华锐互动】AR远程协助技术提供实时远程协作和指导

随着科技的不断发展&#xff0c;企业的运营管理模式也在不断地进行创新和升级。在这个过程中&#xff0c;AR&#xff08;增强现实&#xff09;技术的应用逐渐成为了企业运维管理的新兴趋势。AR远程协助平台作为一种结合了AR技术和远程协助理念的技术手段&#xff0c;为企业运维…

Netty-NIO

文章目录 一、NIO-Selector1.处理accept2.cancel3.处理read4.处理客户端断开5. 处理消息的边界6. 写入内容过多的问题7. 处理可写事件 二、多线程优化三、NIO概念剖析1. stream 和 channel2. IO模型2.1 阻塞IO2.2 非阻塞IO2.3多路复用2.4 同步异步 3. 零拷贝3.1 NIO优化3.2 sen…

hive葵花宝典:hive函数大全

文章目录 版权声明函数1 函数分类2 查看函数列表3 数学函数取整函数: round指定精度取整函数: round向下取整函数: floor向上取整函数: ceil取随机数函数: rand幂运算函数: pow绝对值函数: abs 4 字符串函数字符串长度函数&#xff1a;length字符串反转函数&#xff1a;reverse…

autoware.ai感知随笔--地面滤波

autwoware.ai中点云预处理–points_preprocessor points_preprocessor cloud_transformer: 点云坐标转换,将输入的点云转化为velodyne坐标系下的点云。 compare_map_filter: 对比激光雷达点云和点云地图&#xff0c;然后提取&#xff08;或去除&#xff09;一致的点。 |input_…

机器学习实战-系列教程7:SVM分类实战2线性SVM(鸢尾花数据集/软间隔/线性SVM/非线性SVM/scikit-learn框架)项目实战、代码解读

&#x1f308;&#x1f308;&#x1f308;机器学习 实战系列 总目录 本篇文章的代码运行界面均在Pycharm中进行 本篇文章配套的代码资源已经上传 SVM分类实战1之简单SVM分类 SVM分类实战2线性SVM SVM分类实战3非线性SVM 3、不同软间隔C值 3.1 数据标准化的影响 如图左边是没…