Java数据结构-优先级队列

文章目录

  • 前言
  • 一、优先级队列
    • 1.1 概念
  • 二、优先级队列的模拟实现
    • 2.1 堆的概念
    • 2.2 堆的存储方式
    • 2.3 堆的创建
      • 2.3.1 堆向下调整
      • 2.3.2 堆的创建
      • 2.3.3 建堆的时间复杂度
    • 2.4 堆的插入与删除
      • 2.4.1 堆的插入
      • 2.4.2 堆的删除
    • 2.5 用堆模拟实现优先级队列
  • 三、常用接口介绍
    • 3.1 PriorityQueue的特性
    • 3.2 PriorityQueue常用接口介绍
  • 四、堆的应用
    • 4.1 PriorityQueue的实现
    • 4.2 堆排序


前言

对学习的优先级队列(堆)的知识进行一些总结。


一、优先级队列

1.1 概念

队列是一种先进先出(FIFO)的数据结构,但有些情况下,操作的数据可能带有优先级一般出队列时,可能需要优先级高的元素先出队列,该种场景下,使用队列显然不合适,比如:在手机上玩游戏的时候,如果有来电,那么系统应该优先处理打进来的电话;初中那会班主任排座位时可能会让成绩好的同学先挑座位。
在这种情况下,数据结构应该提供两个最基本的操作,一个是返回最高优先级对象,一个是添加新的对象。这种数据结构就是优先级队列(Priority Queue)。

二、优先级队列的模拟实现

JDK1.8中的PriorityQueue底层使用了堆这种数据结构,而堆实际就是在完全二叉树的基础上进行了一些调整。

2.1 堆的概念

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
堆的性质:

  • 堆中某个节点的值总是不大于或不小于其父节点的值;
  • 堆总是一棵完全二叉树。

在这里插入图片描述

2.2 堆的存储方式

从堆的概念可知,堆是一棵完全二叉树,因此可以层序的规则采用顺序的方式来高效存储
注意:对于非完全二叉树,则不适合使用顺序方式进行存储,因为为了能够还原二叉树,空间中必须要存储空节 点,就会导致空间利用率比较低。
假设i为节点在数组中的下标,则有:

  • 如果i为0,则i表示的节点为根节点,否则i节点的双亲节点为 (i - 1)/2。
  • 如果2 * i + 1 小于节点个数,则节点i的左孩子下标为2 * i + 1,否则没有左孩子。
  • 如果2 * i + 2 小于节点个数,则节点i的右孩子下标为2 * i + 2,否则没有右孩子。

2.3 堆的创建

2.3.1 堆向下调整

对于集合{ 27,15,19,18,28,34,65,49,25,37 }中的数据
在这里插入图片描述

仔细观察上图后发现:根节点的左右子树已经完全满足堆的性质,因此只需将根节点向下调整好即可。
向下过程(以小堆为例):

  1. 让parent标记需要调整的节点,child标记parent的左孩子(注意:parent如果有孩子一定先是有左孩子)。
  2. 如果parent的左孩子存在,即:child < size, 进行以下操作,直到parent的左孩子不存在。

parent右孩子是否存在,存在找到左右孩子中最小的孩子,将parent与较小的孩子child比较,如果:parent小于较小的孩子child,调整结束。否则:交换parent与较小的孩子child,交换完成之后,parent中大的元素向下移动,可能导致子树不满足对的性质,因此需要继续向下调整,即parent = child;child = parent*2+1; 然后继续2。

在这里插入图片描述

public void shiftDown(int[] array, int parent) {
// child先标记parent的左孩子,因为parent可能右左没有右int child = 2 * parent + 1;int size = array.length;while (child < size) {// 如果右孩子存在,找到左右孩子中较小的孩子,用child进行标记if(child+1 < size && array[child+1] < array[child]){child += 1;} // 如果双亲比其最小的孩子还小,说明该结构已经满足堆的特性了if (array[parent] <= array[child]) {break;} else {// 将双亲与较小的孩子交换int t = array[parent];array[parent] = array[child];array[child] = t;// parent中大的元素往下移动,可能会造成子树不满足堆的性质,因此需要继续向下调整parent = child;child = parent * 2 + 1;}}
}

时间复杂度分析:
最坏的情况从根一路比较到叶子,比较的次数为完全二叉树的高度,即时间复杂度为O(log2n)。

2.3.2 堆的创建

对于普通的序列{ 1,5,3,8,7,6 },即根节点的左右子树不满足堆的特性调整即堆的创建代码如下:

public static void createHeap(int[] array) {// 找倒数第一个非叶子节点,从该节点位置开始往前一直到根节点,遇到一个节点,应用向下调整int root = ((array.length-2)>>1);for (; root >= 0; root--) {shiftDown(array, root);}
}

2.3.3 建堆的时间复杂度

因为这里涉及数学运算所以直接给出结果,向下建堆的时间复杂度为O(N),向上建堆时间复杂度为O(NlogN)。

2.4 堆的插入与删除

2.4.1 堆的插入

堆的插入总共需要两个步骤:

  1. 先将元素放入到底层空间中(注意:空间不够时需要扩容)。
  2. 将最后新插入的节点向上调整,直到满足堆的性质。
    在这里插入图片描述
public void shiftUp(int child) {// 找到child的双亲int parent = (child - 1) / 2;while (child > 0) {// 如果双亲比孩子大,parent满足堆的性质,调整结束if (array[parent] > array[child]) {break;} else {// 将双亲与孩子节点进行交换int t = array[parent];array[parent] = array[child];array[child] = t;// 小的元素向下移动,可能到值子树不满足对的性质,因此需要继续向上调增child = parent;parent = (child - 1) / 1;}}
}

2.4.2 堆的删除

注意:堆的删除一定删除的是堆顶元素。

  1. 将堆顶元素对堆中最后一个元素交换。
  2. 将堆中有效数据个数减少一个。
  3. 对堆顶元素进行向下调整。

2.5 用堆模拟实现优先级队列

public class MyPriorityQueue {private int[] array = new int[100];private int size = 0;public void offer(int e) {array[size++] = e;shiftUp(size - 1);}public int poll() {int oldValue = array[0];array[0] = array[--size];shiftDown(0);return oldValue;}public int peek() {return array[0];}
}

三、常用接口介绍

3.1 PriorityQueue的特性

Java集合框架中提供了PriorityQueuePriorityBlockingQueue两种类型的优先级队列,PriorityQueue是线程不安全的PriorityBlockingQueue是线程安全的,本文主要介绍PriorityQueue。
在这里插入图片描述
关于PriorityQueue的使用要注意:

  1. 使用时必须导入PriorityQueue所在的包,即:
import java.util.PriorityQueue;
  1. PriorityQueue中放置的元素必须要能够比较大小,不能插入无法比较大小的对象,否则会抛出
    ClassCastException异常。
  2. 不能插入null对象,否则会抛出NullPointerException。
  3. 没有容量限制,可以插入任意多个元素,其内部可以自动扩容。
  4. 插入和删除元素的时间复杂度为O(logN)。
  5. PriorityQueue底层使用了堆数据结构。
  6. PriorityQueue默认情况下是小堆—即每次获取到的元素都是最小的元素。

3.2 PriorityQueue常用接口介绍

  1. 优先级队列的构造
    此处只是列出了PriorityQueue中常见的几种构造方式。
    在这里插入图片描述
static void TestPriorityQueue(){// 创建一个空的优先级队列,底层默认容量是11PriorityQueue<Integer> q1 = new PriorityQueue<>();// 创建一个空的优先级队列,底层的容量为initialCapacityPriorityQueue<Integer> q2 = new PriorityQueue<>(100);ArrayList<Integer> list = new ArrayList<>();list.add(4);list.add(3);list.add(2);list.add(1);// 用ArrayList对象来构造一个优先级队列的对象// q3中已经包含了三个元素PriorityQueue<Integer> q3 = new PriorityQueue<>(list);System.out.println(q3.size());System.out.println(q3.peek());
}

注意:默认情况下,PriorityQueue队列是小堆,如果需要大堆需要用户提供比较器。

// 用户自己定义的比较器:直接实现Comparator接口,然后重写该接口中的compare方法即可
class IntCmp implements Comparator<Integer>{@Overridepublic int compare(Integer o1, Integer o2) {return o2-o1;}
}
public class TestPriorityQueue {public static void main(String[] args) {PriorityQueue<Integer> p = new PriorityQueue<>(new IntCmp());p.offer(4);p.offer(3);p.offer(2);p.offer(1);p.offer(5);System.out.println(p.peek());}
}

此时创建出来的就是一个大堆。

  1. 插入/删除/获取优先级最高的元素
    在这里插入图片描述
static void TestPriorityQueue2(){int[] arr = {4,1,9,2,8,0,7,3,6,5};// 一般在创建优先级队列对象时,如果知道元素个数,建议就直接将底层容量给好// 否则在插入时需要不多的扩容// 扩容机制:开辟更大的空间,拷贝元素,这样效率会比较低PriorityQueue<Integer> q = new PriorityQueue<>(arr.length);for (int e: arr) {q.offer(e);}System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素// 从优先级队列中删除两个元素之和,再次获取优先级最高的元素q.poll();q.poll();System.out.println(q.size()); // 打印优先级队列中有效元素个数System.out.println(q.peek()); // 获取优先级最高的元素q.offer(0);System.out.println(q.peek()); // 获取优先级最高的元素// 将优先级队列中的有效元素删除掉,检测其是否为空q.clear();if(q.isEmpty()){System.out.println("优先级队列已经为空!!!");} else{System.out.println("优先级队列不为空");}
}

优先级队列的扩容说明:

  • 如果容量小于64时,是按照oldCapacity的2倍方式扩容的。
  • 如果容量大于等于64,是按照oldCapacity的1.5倍方式扩容的。
  • 如果容量超过MAX_ARRAY_SIZE,按照MAX_ARRAY_SIZE来进行扩容。

四、堆的应用

4.1 PriorityQueue的实现

用堆作为底层结构封装优先级队列

4.2 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:

  1. 建堆
  • 升序:建大堆
  • 降序:建小堆
在这里插入代码片
  1. 利用堆删除思想来进行排序
    建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。
    在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/747726.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

鼓楼夜市管理wpf+sqlserver

鼓楼夜市管理系统wpfsqlserver 下载地址:鼓楼夜市管理系统wpfsqlserver 说明文档 运行前附加数据库.mdf&#xff08;或sql生成数据库&#xff09; 主要技术&#xff1a; 基于C#wpf架构和sql server数据库 功能模块&#xff1a; 登录注册 鼓楼夜市管理系统主界面所有店铺信…

C++类与对象二

目录 一、类的嵌套 二、对象引用私有数据成员 通过公有函数为私有成员赋值 利用指针访问私有数据成员 利用函数访问私有数据成员 利用引用访问私有数据成员 三、成员函数重载 四、this指针 一、类的嵌套 #include <iostream> using namespace std;class CC1 { p…

华为配置中心AP内漫游实验

华为配置中心AP内漫游示例 组网图形 图1 配置中心AP内漫游组网图 配置流程组网需求配置思路数据规划配置注意事项操作步骤配置文件 配置流程 WLAN不同的特性和功能需要在不同类型的模板下进行配置和维护&#xff0c;这些模板统称为WLAN模板&#xff0c;如域管理模板、射频模…

Spring Cloud Gateway针对指定接口做响应超时时间限制

背景&#xff1a;我做的这个服务中存在要对大数据量做自定义统计的接口和大文件上传接口&#xff0c;接口响应用时会超过gateWay配置的全局用时&#xff0c;如果调整网关全局的超时时间和服务的全局超时时间是不合理的&#xff0c;故此想能否单独针对某个接口进行细粒度超时限制…

林木园区改造VR仿真培训课件提高人们的专业素质

森林经营VR模拟体验摆脱了传统森林经营周期长、实践难及耗材大等问题&#xff0c;借助VR虚拟仿真技术为人们提供一种全新的、沉浸式的森林经营体验&#xff0c;让人们更好地了解森林经营的全周期。 提高人们的环保意识 通过亲身参与森林经营的过程&#xff0c;人们可以更直观地…

4、鸿蒙学习-@ohos.promptAction (弹窗)

创建并显示文本提示框、对话框和操作菜单。 说明 本模块首批接口从API version 9开始支持。后续版本的新增接口&#xff0c;采用上角标单独标记接口的起始版本。 该模块不支持在UIAbility的文件声明处使用&#xff0c;即不能在UIAbility的生命周期中调用&#xff0c;需要在创建…

关于python中数据分析的一些函数

首先先下载numpy函数库 如果使用的pycharm软件&#xff0c;可在设置中下载&#xff0c;在Python interpreter设置里&#xff0c;点击号&#xff0c;搜索numpy点击下载即可 第一部分 1.array()函数 这是一个将类似数组的数据转为数组的函数&#xff0c;我们还可以控制其数组的…

【Unity】程序创建Mesh(二)MeshRenderer、光照、Probes探针、UV信息、法线信息

文章目录 接上文MeshRenderer&#xff08;网格渲染器&#xff09;Materials&#xff08;材质&#xff09;Material和Mesh对应Lighting光照Lightmapping材质中的光照 光源类型阴影全局光照Probes&#xff08;探针&#xff09;Ray Tracing&#xff08;光线追踪&#xff09;Additi…

【C++】map和set深度讲解

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;熟练掌握map和set容器。 > 毒鸡汤&#xff1a;…

升入理解计算机系统学习笔记

磁盘存储 磁盘是广为应用的保存大量数据的存储设备&#xff0c;存储数据的数量级可以达到几百到几千千兆字节&#xff0c;而基于RAM的存储器只能有几百或几千兆字节。不过&#xff0c;从磁盘上读信息的时间为毫秒级&#xff0c;比从DRAM读慢了10万倍&#xff0c;比从SRAM读慢了…

NodeJs利用腾讯云实现手机发送验证码

本文介绍如何在nodejs实现短信发送&#xff0c;以腾讯云的短信验证为例。 腾讯云中准备工作 首先需要腾讯云的个人或者企业认证的账号&#xff0c;个人会赠送一百条&#xff0c;企业赠送一千条&#xff0c;可以用于测试&#xff0c;地址&#xff1a;腾讯云短信服务。然后需要…

《Ubuntu20.04环境下的ROS进阶学习5》

一、Hector_Mapping构建二维地图 在前面我们已经介绍了如何使用激光雷达来扫描地图&#xff0c;如何用激光雷达来建造地图&#xff0c;本节我们将两者结合起来&#xff0c;通过Hector_Mapping功能包实现SLAM。 二、在仿真环境中进行2D SLAM 1、下载Hector_Mapping sudo apt i…

【论文阅读笔记】Attention Is All You Need

1.论文介绍 Attention Is All You Need 2017年 NIPS transformer 开山之作 回顾一下经典&#xff0c;学不明白了 Paper Code 2. 摘要 显性序列转导模型基于包括编码器和解码器的复杂递归或卷积神经网络。性能最好的模型还通过注意力机制连接编码器和解码器。我们提出了一个新…

【Numpy】练习题100道(26-50题)

#学习笔记# 在学习神经网络的过程中发现对numpy的操作不是非常熟悉&#xff0c;遂找到了Numpy 100题。 Git-hub链接 1.题目列表 26. 下面的脚本输出什么&#xff1f;(★☆☆) print(sum(range(5),-1)) from numpy import * print(sum(range(5),-1)) 27. 考虑一个整数向量…

怎样提升小程序日活?签到抽奖可行吗?

一、 日活运营策略 小程序应该是即用即走的&#xff0c;每个小程序都在用户中有自己的独特定位&#xff0c;可能是生活日常必备&#xff08;美食、团购、商城&#xff09;&#xff0c;也可能是工作办公必备&#xff08;文档、打卡、工具&#xff09;。 如果你想要让自己的小程…

云计算与APP开发,如何利用云端服务提升应用性能?

随着移动应用程序&#xff08;APP&#xff09;的普及&#xff0c;如何提升应用性能成为了开发者们关注的重点之一。而云计算技术的发展为APP开发者提供了全新的解决方案。本文将探讨云计算与APP开发的结合&#xff0c;以及我们公司提出的解决方案&#xff0c;帮助开发者利用云端…

KMP 算法介绍

1. KMP 算法介绍 KMP 算法&#xff1a;全称叫做 「Knuth Morris Pratt 算法」&#xff0c;是由它的三位发明者 Donald Knuth、James H. Morris、 Vaughan Pratt 的名字来命名的。KMP 算法是他们三人在 1977 年联合发表的。 KMP 算法思想&#xff1a;对于给定文本串 T 与模式串 …

使用 ZipArchiveInputStream 读取压缩包内文件总数

读取压缩包内文件总数 简介 ZipArchiveInputStream 是 Apache Commons Compress 库中的一个类&#xff0c;用于读取 ZIP 格式的压缩文件。在处理 ZIP 文件时&#xff0c;编码格式是一个重要的问题&#xff0c;因为它决定了如何解释文件中的字符数据。通常情况下&#xff0c;Z…

代码随想录刷题笔记 Day 52 | 打家劫舍 No.198 | 打家劫舍 II No.213 | 打家劫舍III No.337

文章目录 Day 5201. 打家劫舍&#xff08;No. 198&#xff09;<1> 题目<2> 笔记<3> 代码 02. 打家劫舍 II&#xff08;No. 213&#xff09;<1> 题目<2> 笔记<3> 代码 03.打家劫舍III&#xff08;No. 337&#xff09;<1> 题目<2&g…

工智能的迷惑是技术发展的产物

简述&#xff1a; 随着ChatGPT在全球科技舞台上掀起一股热潮&#xff0c;人工智能再次成为了人们关注的焦点。各大公司纷纷紧跟潮流&#xff0c;推出了自己的AI大模型&#xff0c;如&#xff1a;文心一言、通义千问、讯飞星火、混元助手等等&#xff0c;意图在人工智能领域占据…