KMP 算法介绍

1. KMP 算法介绍

KMP 算法:全称叫做 「Knuth Morris Pratt 算法」,是由它的三位发明者 Donald Knuth、James H. Morris、 Vaughan Pratt 的名字来命名的。KMP 算法是他们三人在 1977 年联合发表的。

  • KMP 算法思想:对于给定文本串 T 与模式串 p,当发现文本串 T 的某个字符与模式串 p 不匹配的时候,可以利用匹配失败后的信息,尽量减少模式串与文本串的匹配次数,避免文本串位置的回退,以达到快速匹配的目的。

1.1 朴素匹配算法的缺陷

在朴素匹配算法的匹配过程中,我们分别用指针 i 和指针 j 指示文本串 T 和模式串 p 中当前正在对比的字符。当发现文本串 T 的某个字符与模式串 p 不匹配的时候,j 回退到开始位置,i 回退到之前匹配开始位置的下一个位置上,然后开启新一轮的匹配,如图所示。

这样,在 Brute Force 算法中,如果从文本串 T[i] 开始的这一趟字符串比较失败了,算法会直接开始尝试从 T[i + 1] 开始比较。如果 i 已经比较到了后边位置,则该操作相当于将指针 i 进行了回退操作。

那么有没有哪种算法,可以让 i 不发生回退,一直向右移动呢?

1.2 KMP 算法的改进

如果我们可以通过每一次的失配而得到一些「信息」,并且这些「信息」可以帮助我们跳过那些不可能匹配成功的位置,那么我们就能大大减少模式串与文本串的匹配次数,从而达到快速匹配的目的。

每一次失配所告诉我们的信息是:主串的某一个子串等于模式串的某一个前缀

这个信息的意思是:如果文本串 T[i: i + m] 与模式串 p 的失配是下标位置 j 上发生的,那么文本串 T 从下标位置 i 开始连续的 j - 1 个字符,一定与模式串 p 的前 j - 1 个字符一模一样,即:T[i: i + j] == p[0: j]

但是知道这个信息有什么用呢?

以刚才图中的例子来说,文本串的子串 T[i: i + m] 与模式串 p 的失配是在第 5 个位置发生的,那么:

  • 文本串 T 从下标位置 i 开始连续的 5 个字符,一定与模式串 p 的前 5 个字符一模一样,即:"ABCAB" == "ABCAB"
  • 而模式串的前 5 个字符中,前 2 位前缀和后 2 位后缀又是相同的,即 "AB" == "AB"

所以根据上面的信息,我们可以推出:文本串子串的后 2 位后缀和模式串子串的前 2 位是相同的,即 T[i + 3: i + 5] == p[0: 2],而这部分(即下图中的蓝色部分)是之前已经比较过的,不需要再比较了,可以直接跳过。

那么我们就可以将文本串中的 T[i + 5] 对准模式串中的 p[2],继续进行对比。这样 i 就不再需要回退了,可以一直向右移动匹配下去。在这个过程中,我们只需要将模式串 j 进行回退操作即可。

KMP 算法就是使用了这样的思路,对模式串 p 进行了预处理,计算出一个 「部分匹配表」,用一个数组 next 来记录。然后在每次失配发生时,不回退文本串的指针 i,而是根据「部分匹配表」中模式串失配位置 j 的前一个位置的值,即 next[j - 1] 的值来决定模式串可以向右移动的位数。

比如上述示例中模式串 p 是在 j = 5 的位置上发生失配的,则说明文本串的子串 T[i: i + 5] 和模式串 p[0: 5] 的字符是一致的,即 "ABCAB" == "ABCAB"。而根据「部分匹配表」中 next[4] == 2,所以不用回退 i,而是将 j 移动到下标为 2 的位置,让 T[i + 5] 直接对准 p[2],然后继续进行比对。

1.3 next 数组

上文提到的「部分匹配表」,也叫做「前缀表」,在 KMP 算法中使用 next 数组存储。next[j] 表示的含义是:记录下标 j 之前(包括 j)的模式串 p 中,最长相等前后缀的长度。

简单而言,就是求:模式串 p 的子串 p[0: j + 1] 中,使得「前 k 个字符」恰好等于「后 k 个字符」的「最长的 k。当然子串 p[0: j + 1] 本身不参与比较。

举个例子来说明一下,以 p = "ABCABCD" 为例。

  • next[0] = 0,因为 "A" 中无有相同前缀后缀,最大长度为 0
  • next[1] = 0,因为 "AB" 中无相同前缀后缀,最大长度为 0
  • next[2] = 0,因为 "ABC" 中无相同前缀后缀,最大长度为 0
  • next[3] = 1,因为 "ABCA" 中有相同的前缀后缀 "a",最大长度为 1
  • next[4] = 2,因为 "ABCAB" 中有相同的前缀后缀 "AB",最大长度为 2
  • next[5] = 3,因为 "ABCABC" 中有相同的前缀后缀 "ABC",最大长度为 3
  • next[6] = 0,因为 "ABCABCD" 中无相同前缀后缀,最大长度为 0

同理也可以计算出 "ABCABDEF" 的前缀表为 [0, 0, 0, 1, 2, 0, 0, 0]"AABAAAB" 的前缀表为 [0, 1, 0, 1, 2, 2, 3]"ABCDABD" 的前缀表为 [0, 0, 0, 0, 1, 2, 0]

在之前的例子中,当 p[5]T[i + 5] 匹配失败后,根据模式串失配位置 j 的前一个位置的值,即 next[4] = 2,我们直接让 T[i + 5] 直接对准了 p[2],然后继续进行比对,如下图所示。

但是这样移动的原理是什么?

其实在上文 「1.2 KMP 算法的改进」 中的例子中我们提到过了。现在我们将其延伸总结一下,其实这个过程就是利用了前缀表进行模式串移动的原理,具体推论如下。

如果文本串 T[i: i + m] 与模式串 p 的失配是在第 j 个下标位置发生的,那么:

  • 文本串 T 从下标位置 i 开始连续的 j 个字符,一定与模式串 p 的前 j 个字符一模一样,即:T[i: i + j] == p[0: j]
  • 而如果模式串 p 的前 j 个字符中,前 k 位前缀和后 k 位后缀相同,即 p[0: k] == p[j - k: j],并且要保证 k 要尽可能长。

可以推出:文本串子串的后 k 位后缀和模式串子串的前 k 位是相同的,即 T[i + m - k: i + m] == p[0: k](这部分是已经比较过的),不需要再比较了,可以直接跳过。

那么我们就可以将文本串中的 T[i + m] 对准模式串中的 p[k],继续进行对比。这里的 k 其实就是 next[j - 1]

2. KMP 算法步骤

3.1 next 数组的构造

我们可以通过递推的方式构造 next 数组。

  • 我们把模式串 p 拆分成 leftright 两部分。left 表示前缀串开始所在的下标位置,right 表示后缀串开始所在的下标位置,起始时 left = 0right = 1
  • 比较一下前缀串和后缀串是否相等。通过比较 p[left]p[right] 来进行判断。
  • 如果 p[left] != p[right],说明当前的前后缀不相同。则让后缀开始位置 k 不动,前缀串开始位置 left 不断回退到 next[left - 1] 位置,直到 p[left] == p[right] 为止。
  • 如果 p[left] == p[right],说明当前的前后缀相同,则可以先让 left += 1,此时 left 既是前缀下一次进行比较的下标位置,又是当前最长前后缀的长度。
  • 记录下标 right 之前的模式串 p 中,最长相等前后缀的长度为 left,即 next[right] = left

3.2 KMP 算法整体步骤

  1. 根据 next 数组的构造步骤生成「前缀表」next
  2. 使用两个指针 ij,其中 i 指向文本串中当前匹配的位置,j 指向模式串中当前匹配的位置。初始时,i = 0j = 0
  3. 循环判断模式串前缀是否匹配成功,如果模式串前缀匹配不成功,将模式串进行回退,即 j = next[j - 1],直到 j == 0 时或前缀匹配成功时停止回退。
  4. 如果当前模式串前缀匹配成功,则令模式串向右移动 1 位,即 j += 1
  5. 如果当前模式串 完全 匹配成功,则返回模式串 p 在文本串 T 中的开始位置,即 i - j + 1
  6. 如果还未完全匹配成功,则令文本串向右移动 1 位,即 i += 1,然后继续匹配。
  7. 如果直到文本串遍历完也未完全匹配成功,则说明匹配失败,返回 -1

3. KMP 算法代码实现

# 生成 next 数组
# next[j] 表示下标 j 之前的模式串 p 中,最长相等前后缀的长度
def generateNext(p: str):m = len(p)next = [0 for _ in range(m)]                # 初始化数组元素全部为 0left = 0                                    # left 表示前缀串开始所在的下标位置for right in range(1, m):                   # right 表示后缀串开始所在的下标位置while left > 0 and p[left] != p[right]: # 匹配不成功, left 进行回退, left == 0 时停止回退left = next[left - 1]               # left 进行回退操作if p[left] == p[right]:                 # 匹配成功,找到相同的前后缀,先让 left += 1,此时 left 为前缀长度left += 1next[right] = left                      # 记录前缀长度,更新 next[right], 结束本次循环, right += 1return next# KMP 匹配算法,T 为文本串,p 为模式串
def kmp(T: str, p: str) -> int:n, m = len(T), len(p)next = generateNext(p)                      # 生成 next 数组j = 0                                       # j 为模式串中当前匹配的位置for i in range(n):                          # i 为文本串中当前匹配的位置while j > 0 and T[i] != p[j]:           # 如果模式串前缀匹配不成功, 将模式串进行回退, j == 0 时停止回退j = next[j - 1]if T[i] == p[j]:                        # 当前模式串前缀匹配成功,令 j += 1,继续匹配j += 1if j == m:                              # 当前模式串完全匹配成功,返回匹配开始位置return i - j + 1return -1                                   # 匹配失败,返回 -1print(kmp("abbcfdddbddcaddebc", "ABCABCD"))
print(kmp("abbcfdddbddcaddebc", "bcf"))
print(kmp("aaaaa", "bba"))
print(kmp("mississippi", "issi"))
print(kmp("ababbbbaaabbbaaa", "bbbb"))

4. KMP 算法分析

  • KMP 算法在构造前缀表阶段的时间复杂度为 O ( m ) O(m) O(m),其中 m m m 是模式串 p 的长度。
  • KMP 算法在匹配阶段,是根据前缀表不断调整匹配的位置,文本串的下标 i 并没有进行回退,可以看出匹配阶段的时间复杂度是 O ( n ) O(n) O(n),其中 n n n 是文本串 T 的长度。
  • 所以 KMP 整个算法的时间复杂度是 O ( n + m ) O(n + m) O(n+m),相对于朴素匹配算法的 O ( n ∗ m ) O(n * m) O(nm) 的时间复杂度,KMP 算法的效率有了很大的提升。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/747700.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

使用 ZipArchiveInputStream 读取压缩包内文件总数

读取压缩包内文件总数 简介 ZipArchiveInputStream 是 Apache Commons Compress 库中的一个类,用于读取 ZIP 格式的压缩文件。在处理 ZIP 文件时,编码格式是一个重要的问题,因为它决定了如何解释文件中的字符数据。通常情况下,Z…

获取iOS和Android的app下载渠道和相关参数的方式

1. iOS 1.1 Deep Link 作用:Deep Link 允许应用响应特定的链接,直接打开应用内的某个特定内容或页面。这意味着用户可以通过点击一个链接,直接跳转到应用内部的某个具体位置,而不是每次都从应用的首页开始。配置:开发…

代码随想录刷题笔记 Day 52 | 打家劫舍 No.198 | 打家劫舍 II No.213 | 打家劫舍III No.337

文章目录 Day 5201. 打家劫舍&#xff08;No. 198&#xff09;<1> 题目<2> 笔记<3> 代码 02. 打家劫舍 II&#xff08;No. 213&#xff09;<1> 题目<2> 笔记<3> 代码 03.打家劫舍III&#xff08;No. 337&#xff09;<1> 题目<2&g…

H5/微信 Video标签移动端播放问题

一、禁止/阻止/取消默认的全屏播放 亲测&#xff1a; IOS和安卓均有效 <video x5-playsinline"true"playsinline"true"webkit-playsinline"true"x-webkit-airplay"true"x5-video-orientation"portraint"><source…

工智能的迷惑是技术发展的产物

简述&#xff1a; 随着ChatGPT在全球科技舞台上掀起一股热潮&#xff0c;人工智能再次成为了人们关注的焦点。各大公司纷纷紧跟潮流&#xff0c;推出了自己的AI大模型&#xff0c;如&#xff1a;文心一言、通义千问、讯飞星火、混元助手等等&#xff0c;意图在人工智能领域占据…

sqlplus登录卡死无响应异常处理

一、问题描述 通过Sqlplus 访问数据hang死在登录界面&#xff0c;且不能通过CtrlC取消&#xff0c;如下所示&#xff1a; [oracletest01 ~]$ sqlplus / as sysdbaSQL*Plus: Release 19.0.0.0.0 - Production on Fri Mar 13 10:41:36 2024 Version 19.3.0.0.0Copyright (c) 198…

Vue多文件学习项目综合案例——购物车,黑马vue教程

一、项目截图 二、主要知识点 vuex的使用json-server的使用json-server --watch index.json三、需要注意的点 json-server 安装成功&#xff0c;查看版本直接报错。安装默认版本埋下的一个坑&#xff0c;和node版本不匹配作者直接安装vuex&#xff0c;默认安装也是版本不匹配…

C语言案例01, 输入两个整数,获得两个数加减乘除的值,持续更新中~

一.题目 /* 输入两个整数,获得两个数加减乘除的值 */ *///头文件 #include <stdio.h>//主方法 int main() {//声明两个int类型的变量int a;int b;//提示用用户输入printf("请输入两个整数!\n");//用scanf 获取a和b在内存中的值scanf("%d%d",&a…

ai智能外呼机器人的功能,机器人对话常用语模板搭建

智能外呼机器人就是用来往外呼出打电话的;经常看到有文章说电话机器人将要代替传统人工话务员、电话销售员要失业了、外呼机器人要颠覆电销革命了等等&#xff0c;我想说的是&#xff0c;目前市场上的电话机器人还远远不能达到&#xff0c;未来几年内也不一定会实现。 下面就简…

鸿蒙Harmony应用开发—ArkTS声明式开发(容器组件:Panel)

可滑动面板&#xff0c;提供一种轻量的内容展示窗口&#xff0c;方便在不同尺寸中切换。 说明&#xff1a; 该组件从API Version 7开始支持。后续版本如有新增内容&#xff0c;则采用上角标单独标记该内容的起始版本。 子组件 可以包含子组件。 说明&#xff1a; 子组件类型&a…

QMI8658芯片I2C驱动开发指南

这个芯片纯国产挺好用的&#xff0c;电路很好设计&#xff0c;我这垃圾焊功&#xff0c;纯手焊&#xff0c;&#xff0c;居然能用。 第一部分 硬件连接 画的很简陋&#xff0c;看看就可以了&#xff0c;这里I2C总线需要接10K上拉没有画出来&#xff0c;这个需要注意一下。 …

树形结构 一篇文章梳理

树形结构是一种非常重要的非线性数据结构&#xff0c;它模拟了具有层次关系的数据模型。在树形结构中&#xff0c; 目录 一、组成元素&#xff1a; 二、树的属性&#xff1a; 深度或高度 度 路径 路径长度 三、树的类型 1 二叉树 2 多叉树 3 完全二叉树 4 满二叉树…

【计算机网络_传输层】UDP和TCP协议

文章目录 1. 重新理解端口号端口号划分netstat指令pidof 2. UDP协议2.1 UDP协议端格式2.2 UDP的特点2.3 UDP的注意事项2.4 基于UDP的应用层协议 3. TCP协议&#xff08;传输控制协议&#xff09;3.1 TCP协议的格式和报头字段3.2 如何解包和分用3.3 理解TCP协议报头3.4 TCP协议的…

day-20 二叉树的层序遍历

思路&#xff1a;利用队列进行广度优先遍历即可 注意点&#xff1a;ArrayList执行remove之后&#xff0c;索引i会立即重排&#xff0c;注意可能越界 code: /*** Definition for a binary tree node.* public class TreeNode {* int val;* TreeNode left;* TreeN…

[Java、Android面试]_05_内存泄漏和内存溢出

本人今年参加了很多面试&#xff0c;也有幸拿到了一些大厂的offer&#xff0c;整理了众多面试资料&#xff0c;后续还会分享众多面试资料。 整理成了面试系列&#xff0c;由于时间有限&#xff0c;每天整理一点&#xff0c;后续会陆续分享出来&#xff0c;感兴趣的朋友可关注收…

Xcode调试Qt 源码

在Mac下使用Xcode 开发Qt程序&#xff0c;由于程序断点或者崩溃后&#xff0c;Qt库的堆栈并不能够正确定位到源码的cpp文件&#xff0c;而是显示的是汇编代码&#xff0c;导致不直观的显示。 加载的其他三方库都是同理。 所以找了攻略和研究后&#xff0c;写的这篇文章。 一&a…

SIP调试之SIPP测试工具

SIPP是针对SIP协议的一个性能测试的命令行工具&#xff0c;可以动态显示测试的统计信息&#xff08;如呼叫速率、延时、消息统计等&#xff09;。用户可以通过XML场景配置文件&#xff0c;自定义模拟各种UAC/UAS测试场景的信令交互流程&#xff0c;可以被用来测试IP话机、SIP代…

【IC设计】Verilog线性序列机点灯案例(二)(小梅哥课程)

文章目录 该系列目录&#xff1a;设计目标设计思路RTL 及 Testbench仿真结果存在的问题&#xff1f;改善后的代码RTL代码testbench代码 仿真结果 案例和代码来自小梅哥课程&#xff0c;本人仅对知识点做做笔记&#xff0c;如有学习需要请支持官方正版。 该系列目录&#xff1a;…

Nexus如何导入jar以及批量导入Maven的本地库目录

上传依赖包到Nexus 服务器的方式有多种, 包含: 1.单个jar上传: 在Nexus管理台页面上传单个jar 2.源码编译上传:在源码项目中使用 Maven的deploy 命令发布 3. 使用脚本批量上传Maven本地库的目录 前言 本篇基于 Nexus 的版本是 nexus-3.55.0-01本方法适用Linux和WindowsWind…

C++中using 和 typedef 的区别

C中using 和 typedef 的区别_typedef using-CSDN博客 在C中&#xff0c;“using”和“typedef”执行声明类型别名的相同任务。两者之间没有重大区别。C中的“Using”被认为是类型定义同义词。此方法也称为别名声明。定义这些别名声明的工作方式类似于使用“using”语句定义C中…