Stable Diffusion 免费升级 SDXL 1.0,哪些新特性值得关注?体验如何?5 分钟带你体验!

一、引言

7 月 26 日,Stability AI 发布了 SDXL 1.0,号称目前为止,最厉害的开放式图像生成大模型。

它到底有没有网上说的那么炸裂?真的已经实现了像 midjourney 一样 靠嘴出图 的功能吗?相对于之前的版本,增加了哪些新特性?

今天体验了一把,一起来看看!

二、新特性

1、清晰的文字生成

大家都知道,目前的绘画工具,对于文字生成的支持,还不是特别成熟。虽然有一些工具已经可以生成文字了,但生成的总是不太能令人满意。而 SDXL 1.0 在文字生成方面,又向前迈了一步。

比如通过短短一句提示词:a cute cat holds a paper with text "cool",professional photography,就可以生成一只拿着一张写着 “cool” 字样的小猫。

2、更好的理解人体结构

以前的 Stable Diffusino 模型,在生成正确的人体结构方面,存在着明显的问题。比如经常生成多余或者残缺的四肢,以及极度畸形的脸等等。SDXL 1.0 在一定程度上解决了这个问题。

我们都知道,AI 不擅长画手,比如之前为了生成一个正常的手,会加很多的负向提示词、Embedding 或者使用 OpenPose 等插件,而在 SDXL 1.0 中,这些通通都不需要了,或者更确切地说,就算不用这些,生成的人物也比之前的版本也要好很多。

3、自由度大幅提升

在 SDXL 1.0 之前,如果想生成不同风格的图像,必须通过改变大模型或者下载相应的 LoRA 模型来实现,而在 SDXL 1.0 中,可以通过提示词在十余种风格间做无缝切换,包括动漫、摄影、数字插画等等。

4、更短的提示词

在提示词方面,咒语变得更短、更简单了,同时增强了对自然语言的理解,大大降低了我们写提示词的门槛。

  • 之前的提示词,是由一个个单词、词语、逗号等符号组成的词条化的描述,而在 SDXL 1.0 中,可以直接使用自然语言(比如一整个句子)来描述了。
  • 之前的提示词,在描述的时候,除了要写生成主体、场景、环境光线等提示词之外,还需要添加例如 masterpiece、best quality、highres 等画质提示词以及大量的负面提示词。而在 SDXL 1.0 中,这些质量提示词以及负面提示词,都不需要再写了。
  • 对一些概念的理解以及对环境氛围的还原更加到位了。对于概念的理解,官网给出了个例子:比如对于这两个概念 “The Red Square”(一个著名的景点)和 “red square”(一个形状),SDXL 1.0 已经可以区分他俩了。

5、支持更大尺寸和精度的照片

有 Stable Diffusion 出图经验的朋友都知道,之前如果直接生成 1024 x 1024 或更高分辨率的大图,有可能会出现多人多头、肢体错位等的现象,需要使用高清修复或者 Tiled Diffusion 等其他方法才能达到。

而现在,可以直接出 1024 x 1024 或更高分辨率的大图了也不会有问题了。

6、色彩的鲜艳度和准确度

SDXL1.0 在色彩的鲜艳度和准确度上做了很大改进,相对于之前版本,在对比度、光线和阴影上较之前版本更加真实了。

三、如何体验 SDXL 1.0

1、Liblib AI

如果仅仅是为了体验,推荐一个最简单快捷的在线方式:Liblib AI。

Liblib AI 在线出图,一天可以免费出图 300 张,基本满足大部分同学需求。

ps: Liblib AI 在线体验的缺点是,插件少,而且高峰期出图可能会卡。简单体验还是可以,要想深度体验,还是需要使用云部署 Stable Diffusion 或者本地部署 Stable Diffusion 的方式。

Liblib AI 体验步骤很简单,跟着操作,5 分钟搞定!

  1. 在 Liblib AI 中,点 “在线 Stable Diffusion”。

  1. 模型选择带 “SDXL” 的模型,然后输入简单的提示词。

  1. 参数设置。

如果不知道哪个参数出图好,可以直接抄图上的。

采样方法:DPM++ 2M Karras(或其他)

采样步数:30

之前很多时候,我们一般会将采样步数设置成 20,但在 SDXL 中,如果将采样步数设置为 20,会让人感觉图片精细度不够。因此可以将采样步数适当调大一些。

分辨率:1024 x 1024 或其他分辨率。太低可能会影响出图质量。

其他参数:可以默认即可。

  1. 点“生成图片”。

一张使用 SDXL 1.0 生成的图片就出来了,是不是很简单!

2、本地部署

温馨提醒:需要先将本地的 Stable Diffusion WebUI 更新到 1.5.1。

如果之前本地没有部署过 Stable Diffusion WebUI,

Mac 电脑可以参考这篇:Mac 本地部署 Stable Diffusion(超详细,含踩坑点)

Windows 电脑:直接使用秋叶大佬的一键部署安装就可以了。

如果本地已经安装部署过 Stable Diffusion WebUI 了,直接下载下面的两个 SDXL 1.0 的模型,放在 SDW 的根目录/models/Stable-diffusion 目录下即可。

SDXL 1.0 base model 下载

SDXL 1.0 refiner model 下载

这里大家可以发现 SDXL 1.0 有两个模型,一个 base model,一个 refiner model。在使用的时候,先通过 base model 生图,再选择 “发送到图生图”,用 refiner model 进行优化。

第二步使用 refiner model 进行优化的过程,其实相当于通过图生图进行低幅度的重绘来提高图片的画质(这里的重绘幅度不宜设置太高,比如 0.2、0.3 就 ok,也可以根据自己需求)。

当然也可以不进行第二步,只使用 base model 进行图像的生成。

出图方式及具体的参数设置,参照上面 Liblib AI 的方式,这里就不再赘述了。

3、官方提供的方式

Stability AI 官方也提供了几种体验方式:

四、目前的问题

说了半天,SDXL 1.0 多么强大,难道就真的无懈可击了吗?当然不是!

1、一些旧模型、LoRA 模型以及 ControlNet 目前还不支持

比如大部分旧版的模型、LoRA 模型以及 ControlNet 等,用在 SDXL 1.0 上大部分都会失效,因为目前还不支持,需要重新更新才能适配 SDXL 1.0。

另外,SDXL 1.0 只是一个基础大模型,就好比之前的 SD 1.4、SD 1.5,而我们在日常绘画时,往往不会使用这些官方提供的基础模型,而是使用经过这些基础模型进行训练、微调、融合之后的特定模型。

比如我们想画二次元风格的图片,会选择 Cetus-Mix、Counterfeit、AbyssOrangeMix 等二次元风格的大模型,而不会使用官方的基础大模型。

如果我们想画写实风格的图片,会选择 Deliberate、LOFI、Realistic Vision 等大模型,也不会使用官方的基础大模型。

在 SDXL 问世之后,也会涌现出有很多基于 SDXL 训练、微调、融合而成的大模型。目前在 Liblib 等平台上,已经有基于 SDXL 训练的模型了,大家可以试用。而我们日后的绘图,大概率会使用这些基于基础大模型训练、微调、融合而成模型,而不是目前官方提供的 SDXL 的模型。

也就是说,SDXL 1.0 目前只是一个过渡期产品,感兴趣的尝尝鲜、提前了解一些知识还是可以的,但大规模的用于生产,可能还需要一些时间。

2、太耗显存

相对于之前的 Stable Diffusion 版本,明显更耗显存了。官方推荐在 8G 以上的显存显卡上或者云平台上运行。

五、总结

SDXL 1.0 给我们带来最大的好处就是,基本可以实现 靠嘴出图了,使出图方式更加简单

新手小白可以在完全不了解复杂的提示词结构、LoRA、Embedding、扩展插件等知识的情况下,也可以使用自然语言轻松出图了,大大降低了使用门槛

后面肯定还会涌现出一批基于 SDXL 1.0 训练的大模型,到时候肯定会更加惊艳,一起期待一下吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/74531.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

专业的视觉特效处理包,FxFactory 8 Pro for Mac助您打造精彩视频

FxFactory 8 Pro for Mac是一款强大的视觉特效处理包,专门为Mac用户设计。它集成了超过200种高质量的视觉效果和过渡效果,可以轻松地应用于各种视频项目中。该软件提供了一个直观的界面,用户可以通过简单拖放操作将特效应用到视频片段上。它支…

oracle将一个用户的表复制到另一个用户

注:scott用户和scott用户下的源表(EMP)本身就有,无需另行创建。 GRANT SELECT ON SCOTT.emp TO BI_ODSCREATE TABLE ODS_EMP AS SELECT * FROM SCOTT.emphttp://www.bxcqd.com/news/77615.html SQL语句查询要修改密码的用户…

逻辑回归Logistic

回归 概念 假设现在有一些数据点,我们用一条直线对这些点进行拟合(这条直线称为最佳拟合直线),这个拟合的过程就叫做回归。进而可以得到对这些点的拟合直线方程。 最后结果用sigmoid函数输出 因此,为了实现 Logisti…

树的引进以及二叉树的基础讲解——【数据结构】

W...Y的主页 😊 代码仓库分享 💕 当我们学习完前面的数据结构,难度也就会上升,但是这个也是非常重要的数据结构。今天我们来学习一种新的数据类型——树。 目录 树的概念以及结构 树的概念 树的相关概念 树的表示 树在实…

Socks5 与 HTTP 代理在网络安全中的应用

目录 Socks5和HTTP代理在网络安全中的应用。 Socks5代理和HTTP代理的优点和缺点。 选择合适的代理IP需要考虑的因素: 总结 在网络安全领域中,Socks5和HTTP代理都扮演着重要的角色。作为两种不同的代理技术,它们在网络安全中的应用各有特点…

02 CSS技巧

02 CSS技巧 clip-path 自定义形状&#xff0c;或者使用自带的属性画圆等circle HTML结构 <body><div class"container"></div> </body>CSS结构 使用*polygon*自定义形状 .container {width: 300px;height: 300px;background-color: re…

建站系列(三)--- 网络协议

目录 相关系列文章前言一、定义二、术语简介三、协议的组成要素四、网络层次划分五、常见网络协议划分六、常用协议介绍&#xff08;一&#xff09;TCP/IP&#xff08;二&#xff09;HTTP协议&#xff08;超文本传输协议&#xff09;&#xff08;三&#xff09;SSH协议 相关系列…

Python小知识 - 如何使用Python进行机器学习

如何使用Python进行机器学习 Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。 机器学习是人工智能的一个分支&#xff0c;是让计算机自动“学习”。学习的过程是从经验E中获得知识K。经验E可以是一个数据集&#xff0c;比如一个图像数据集。知识K可以是计算机…

【系统设计系列】 负载均衡和反向代理

系统设计系列初衷 System Design Primer&#xff1a; 英文文档 GitHub - donnemartin/system-design-primer: Learn how to design large-scale systems. Prep for the system design interview. Includes Anki flashcards. 中文版&#xff1a; https://github.com/donnemart…

运算符重载(个人学习笔记黑马学习)

1、加号运算符重载 #include <iostream> using namespace std; #include <string>//加号运算符重载 class Person { public://1、成员函数重载号//Person operator(Person& p) {// Person temp;// temp.m_A this->m_A p.m_A;// temp.m_B this->m_B p…

【算法】快速排序 详解

快速排序 详解 快速排序1. 挖坑法2. 左右指针法 &#xff08;Hoare 法&#xff09;3. 前后指针法4. 快排非递归 代码优化 排序&#xff1a; 排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性&…

docker介绍和安装

docker安装 下载Docker依赖组件 yum -y install yum-utils device-mapper-persistent-data lvm2 设置下载Docker的镜像源为阿里云 yum-config-manager --add-repo http://mirrors.aliyun.com/dockerce/linux/centos/docker-ce.repo 安装Docker服务 yum -y install docker-ce 安…

OpenCV项目实战(1)— 如何去截取视频中的帧

前言&#xff1a;Hello大家好&#xff0c;我是小哥谈。针对一段视频&#xff0c;如何去截取视频中的帧呢&#xff1f;本节课就给大家介绍两种方式&#xff0c;一种方式是按一定间隔来截取视频帧&#xff0c;另一种方式是截取视频的所有帧。希望大家学习之后能够有所收获&#x…

计算机网络概述

目录 一、计算机网络的作用及互联网概述 1.1计算机网络在信息时代中的作用 1.2基本概念 1.3互联网基础架构发展三个阶段 1.4互联网的标准化工作 二、互联网的组成 2.1互联网组成 2.2互联网的边缘部分 2.3互联网的核心部分 三、计算机网络的类别 3.1计算机网络的定义:…

yapi以及gitlab的容器化部署

yapi部署&#xff1a; https://blog.csdn.net/Chimengmeng/article/details/132074922 gitlab部署 使用docker-compose.yml version: 3 services: web: image: twang2218/gitlab-ce-zh:10.5 restart: always hostname: 192.168.xx.xx environm…

企业架构LNMP学习笔记19

Nginx 第三方模块的使用&#xff1a; Nginx官方没有的功能&#xff0c;开源开发人员定制开发了一些功能&#xff0c;把代码公布出来&#xff0c;可以通过编译加载第三方模块的方式&#xff0c;使用新功能。 NGINX 3rd Party Modules | NGINX shell > tar xvf ngx-fancyinde…

IDEA中的MySQL数据库所需驱动包的下载和导入方法

文章目录 下载驱动导入方法 下载驱动 MySQL数据库驱动文件下载方法&#xff1a; 最新版的MySQL版本的驱动获取方法&#xff0c;这个超链接是下载介绍的博客 除最新版以外的MySQL版本的驱动获取方法&#xff0c;选择Platform Independent&#xff0c;选择第二个zip压缩包虾藻…

浅谈redis未授权漏洞

redis未授权漏洞 利用条件 版本比较高的redis需要修改redis的配置文件&#xff0c;将bind前面#注释符去掉&#xff0c;将protected-mode 后面改为no 写入webshell config get dir #查看redis数据库路径 config set dir web路径# #修改靶机Redis数据库路径 config set dbfilen…

QT QTabWidget 控件 使用详解

本文详细的介绍了QTabWidget控件的各种操作&#xff0c;例如&#xff1a;新建界面、设置页面名字、设置提示信息、设置页面激活、设置标题栏位置、设置页面关闭按钮、设置页面关闭按钮、获取页面下标、获取页面总数、清空所有页面、删除某个页面、设置拖拽移动、设置显示页面、…

MyBatis-Plus排除不必要的字段

查询学生信息排除年龄列表 &#x1f4da;&#x1f50d; 使用MyBatis-Plus排除某些字段。如果你想要进行查询&#xff0c;但又不需要包含某些字段&#xff0c;那么这个功能将非常适合你。&#x1f50d;&#x1f393;&#x1f4dd; 1. 学生信息查询-排除年龄列表 在使用 MyBat…