D-Star 寻路算法

D-Star 寻路算法

下面简写 D-Star 为 D*

  1. D算法:D 算法”的名称源自 Dynamic A Star,最初由Anthony Stentz于“Optimal and Efficient Path Planning for Partially-Known Environments”中介绍。它是一种启发式的路径搜索算法, 适合面对周围环境未知或者周围环境存在动态变化的场景。

  2. 同 A算法类似,D 通过维护一个优先队列 OpenList 来对场景中的路径节点进行搜索,不同的是 D* 不是从起点节点开始搜索,而是从目标点开始搜索,首先将目标点放置进OpenList开始搜索,直到起点节点从OpenList队列中出队为止,即为搜索完成,否则视为搜索失败。

  3. D*算法采用反向搜索的目的在于后期需要重新规划路径的时候,能够用到之前搜索到的最短路径信息,减少搜索量,以为从目标节点到起始节点进行搜索得到的最短路径,是以目标点为中心辐射出的最短路径图,图上目标点到各个点之间的路径都是最短的,因此当在既定路径上遇到障碍需要重新规划路径的时候,可以很好的利用之前得到的信息。

  4. 而从起点节点向目标节点搜索得到的最短路径图,是以起点为中心辐射出的最短路径图,当沿着路径前行遇到障碍后,需要重新进行路径规划时,没有办法很好的利用原先搜索到的信息。

  5. E-Star 算法分为两个阶段
    第一个阶段:使用 Dijkstra/A*算法找到从目标点到起始点的路径,然后机器人从开始节点向目标点移动。
    第二阶段:是动态避障搜索阶段,当机器人移动到一个节点要向下一给节点移动的时候,发现下一个节点由可行走变成障碍时,需要重新规划路径。

  6. 参考D论文
    D
    算法有几个重要的概念及函数
    6.1. G : Goal State目标节点

    6.2. **State :**路径节点,路径节点包含以下几个信息

    6.2.1. BackPointer:指向前一个 State 的指针,一般 Dijkstra/A 用 Parent表示,路径搜索结束后,机器人从所在的 State,通过 BackPointer 即可一步一步地移动到目标 Goal State
    6.2.2. b(X) = Y 表示 X 的
    BackPointer
    *(父节点)是 Y
    6.2.3. New:State 从未被放置于 OpenList
    Open:State 此时正存放于 OpenList
    **Closed:**该 State 已经从 OpenList 中出队

    6.3. H(X):代价函数,表示当前 StateG 的开销计算,如果节点X的父节点是YH(X) = H(Y) + C(X,Y)

    6.4. K(X):Key Function,该值是优先队列OpenList中的排序依据,K 值最小的State位于队列头(Dijkstra/AOpenList 排序是以H值为排序依据),D是针对动态环境设计的算法,由于环境的改变节点的H值可能发生改变,而节点的K值记录的是该点的最小H值,也就是说对于为遍历到的点,K=H=inf,对于表示为 OpenClosed的节点 K = min(K,H_new)

    6.5. C(X,Y):表示XY之间的路径开销

    注意:OpenList 是依据节点K值由小到大进行排序的优先队列

  7. 算法最主要的函数:
    PROCESS-STATE:计算到目标G的最优路径
    MODIFY-COST:改变两个 State 之间的开销C(X,Y),并将受影响的State置于OpenList 中
    INSERT: 用来修改节点 X 状态以及 H(X)值和K(X)

D* 寻路算法伪代码如下
下面代码是论文中的代码
在这里插入图片描述
下面是代码的注释翻译

-- 下面代码包含:
-- 开始寻路过程
-- 行走过程
-- 遇到障碍再寻路的过程
{-- 初始设置目标节点 H 值为 0,将 G 加入到 OpenListh(G)=0;-- 开始寻路过程do{-- 循环调用 PROCESS-STATE(), 函数返回当前 OpenList 优先队列中节点K值最小的K值-- 如果 OpenList 优先队列中没有节点则返回 -1kmin=PROCESS-STATE();-- while 判定条件-- kmin = -1:说明还没有找到 开始节点(start state),OpenList 优先队列中没有节点了,则寻路失败-- start state not removed from open list:开始节点(start state)从 OpenList 队列出队,则已经从目标节点找到 开始节点了}while(kmin != -1 && start state not removed from open list);if(kmin == -1){-- 如果 kmin = -1 说明寻路失败返回,退出goal unreachable; exit;}else{-- 寻路成功,在 do-while 中包含了 行走、do{-- 行走过程do{-- 迭代行走trace optimal path();-- while 判定条件-- goal is not reached:没有到大 G 目标节点-- map == environment:假如当前走到节点X,要向下一个节点Y行走时,判断节点Y状态发生了变化(变成了障碍等)}while ( goal is not reached && map == environment);-- 如果已经到大 G 目标点,退出if (goal_is_reached){exit;}else{-- 没有到达目标点,肯定是行走过程中一个本来可以通过的节点,状态发生了变化-- 机器人行走过程中发现障碍时所在的 state 节点X-- 向节点Y行走时发现节点Y状态发生变化了,导致路径开销的更改已经传播到了节点XY = State of discrepancy reached trying to move from some State X;-- 改变节点Y、X 的CostMODIFY-COST(Y,X,newc(Y,X));-- 遇到障碍再寻路的过程do{kmin=PROCESS-STATE();-- while 判定条件-- kmin< h(X):经过不断地处理直到 kmin 小于节点 X 的 H值-- kmin != -1:当 kmin = -1 时表示寻路失败}while(kmin< h(X) && kmin != -1);-- 寻路失败,退出if(kmin==-1)exit();}}while(1);}
}

另论文中另一个版本的逻辑如下
在这里插入图片描述
两者的不同在于遇到障碍重新规划路径的 do-while 中的 while 部分

两个代码不同点只在下面 while 部分,经过测试,两种判定都是可以完成再次寻路的,时间原因论文没有仔细阅读,有疑问的读着可以自行去看论文,然后给我说一下结果
do
{kmin=PROCESS-STATE();
}while(kmin< h(X) && kmin != -1);do
{kmin=PROCESS-STATE();
}while( k(Y) < h(Y) && kmin != -1);

PROCESS-STATE() 函数
在这里插入图片描述

MODIFY-COST(X,Y,cval)
MIN-STATE()
GET-KMIN()
INSERT(X, newCost)
在这里插入图片描述

上面截图中函数代码不全,下面是各个函数补齐
MODIFY-COST(X,Y,cval)

    c(X,Y)=cvalh(Y) = cvalif t(X) =CLOSED then INSERT (X,h(X))Return GET-MIN ( )

INSERT(X,Hnew)

	if t(X) = NEW thenk(X)=hnew -- 然后就是 X 加入到 OpenList 队列这部分X and to OpenListif t(X) = OPEN then k(X)=min(k(X),hnew)if t(X) = CLOSED then k(X)=min(k(X),hnew)-- 然后就是 X 加入到 OpenList 队列这部分X and to OpenList-- 漏掉了 h(X) = hnewh(X) = hnewt(X)= OPENSort open list based on increasing k values;

MIN-STATE()

返回 OpenList 优先队列中 节点K 值最小的 节点

GET-KMIN()

返回 OpenList 优先队列中 节点K 值最小的 节点的 K 值

一个 使用 Unity 实现的 Demo 链接

算法在路径 PathFindingUnity\Assets\Script\PathFinding\Algorithms\DStar

D* 核心逻辑就是上面几个截图
Originally stated D* Algorithm 或者 D* Algorithm, again
加 下面几个方法
PROCESS-STATE()
MODIFY-COST(X,Y,cval)
MIN-STATE()
GET-KMIN()
INSERT(X, newCost)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/744194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

把 Windows 装进 Docker 容器里

本篇文章聊聊如何在 Docker 里运行 Windows 操作系统&#xff0c; Windows in Docker Container&#xff08;WinD&#xff09;。 写在前面 我日常使用 macOS 和 Ubuntu 来学习和工作&#xff0c;但是时不时会有 Windows 使用的场景&#xff0c;不论是运行某个指定的软件&…

QThread常用相关函数、线程启动方式

一、常用相关函数 可以将常用的函数按照功能进行以下分类&#xff1a; 线程启动 void start() 调用后会执行run()函数&#xff0c;但在run()函数执行前会发射信号started()&#xff0c;操作系统将根据优先级参数调度线程。如果线程已经在运行&#xff0c;那么这个函数什么也不…

杂谈-关于如何在博客或者技术站上提问才能获得作者更高的回复意愿和交流热情

如何提问一个有效的问题 &#x1f606; 首先为什么写这篇文章&#xff0c;由于在研究生的学习和工作过程中由于个人技术知识稍微丰富一点点也比较好学&#xff0c;经常会被提问或者自己提问-在博客&#xff0c;GitHub上&#xff0c;Stakflow上等等-也在和学弟学妹交流的过程中听…

C#调用Halcon出现尝试读取或写入受保护的内存,这通常指示其他内存已损坏。System.AccessViolationException

一、现象 在C#中调用Halcon&#xff0c;出现异常提示&#xff1a;尝试读取或写入受保护的内存,这通常指示其他内存已损坏。System.AccessViolationException 二、原因 多个线程同时访问Halcon中的某个公共变量&#xff0c;导致程序报错 三、测试 3.1 Halcon代码 其中tsp_width…

ELF-DISCOVER:大型语言模型自我构建推理结构

论文地址&#xff1a;https://arxiv.org/pdf/2402.03620.pdf Abstract 我们引入了SELF-DISCOVER&#xff0c;这是一个通用框架&#xff0c;用于让LLMs自我发现任务内在的推理结构&#xff0c;以解决对典型提示方法具有挑战性的复杂推理问题。该框架的核心是一个自我发现过程&…

测试交付类项目-文档规范

目的&#xff1a;为了确保项目的顺利进行和成功完成&#xff0c;并且为项目交付物提供准确的说明和指导。 文档提供时间&#xff1a;一般为产品验收完成&#xff0c;需求方初步确认完成后&#xff0c;需进行相关文档的提供&#xff0c;供需求方进行验收。 交付文档模板&#…

Python pip 换成国内镜像源

用 easy_install 和 pip 来安装第三方库很方便&#xff0c;它们的原理其实就是从Python的官方源pypi.python.org/pypi 下载到本地&#xff0c;然后解包安装。不过因为某些原因&#xff0c;访问官方的pypi不稳定&#xff0c;很慢甚至有些还时不时的访问不了。 跟 ubuntu 的 apt …

代码随想录算法训练营第七天|454.四数相加II、383. 赎金信、15. 三数之和、18. 四数之和

题目&#xff1a;454.四数相加II 文章链接&#xff1a;代码随想录 视频链接&#xff1a;LeetCode:454.四数相加|| 题目链接&#xff1a;力扣题目链接 图释&#xff1a; // 四数相加|| int fourSumCount(vector<int>& nums1, vector<int>& nums2, vect…

项目经理到底要不要考PMP?有啥好处?

很多新手项目经理或者想要转行做项目经理的人&#xff0c;都会很快的注意到”PMP”这个证书。并且开始认真思考自己要不要考这个证书&#xff1f;以及想知道这个证书考试的具体难度、流程和内容。 先说结论&#xff1a; 值得考&#xff0c; 很容易考。 我在备考的过程中惊异…

excel批量数据导入时用poi将数据转化成指定实体工具类

1.实现目标 excel进行批量数据导入时&#xff0c;将批量数据转化成指定的实体集合用于数据操作&#xff0c;实现思路&#xff1a;使用注解将属性与表格中的标题进行同名绑定来赋值。 2.代码实现 2.1 目录截图如下 2.2 代码实现 package poi.constants;/*** description: 用…

【消息队列开发】 实现消息持久化

文章目录 &#x1f343;前言&#x1f340;消息存储格式设计&#x1f6a9;queue_data文件设计&#x1f6a9;queue_stat文件设计&#x1f6a9;拓展 &#x1f384;实现统计文件&#xff08;queue_stat&#xff09;的读写⭕总结 &#x1f343;前言 本次开发目标&#xff0c;实现消…

2024阿里云域名优惠口令大全(3月更新)

2024年阿里云域名优惠口令&#xff0c;com域名续费优惠口令“com批量注册更享优惠”&#xff0c;cn域名续费优惠口令“cn注册多个价格更优”&#xff0c;cn域名注册优惠口令“互联网上的中国标识”&#xff0c;阿里云优惠口令是域名专属的优惠码&#xff0c;可用于域名注册、续…

C# MES通信从入门到精通(1)——串口传输文件

前言: 在上位机软件开发领域,有一些工厂的mes系统需要我们通过串口发送文件的方式把一些图片或者检测数据csv文件等发送给服务器,这种方式是一些比较旧的工厂采用的方式,但是这种方式也是存在的,本文就是讲解如何使用串口发送文件详情见下文。 1、串口发送文件思路 将需…

【刷题节】美团2024年春招第一场笔试【技术】

1.小美的平衡矩阵 import java.util.Scanner;public class Main {public static void main(String[] args) {Scanner scanner new Scanner(System.in);int n scanner.nextInt();int[][] nums new int[n][n], sum new int[n][n];char[] chars;for (int i 0; i < n; i) {…

介绍Oracle的SQL调化健康检查脚本(SQLHC)

概述 Oracle提供了一个SQL调优健康检查脚本&#xff08;SQLHC&#xff09;&#xff0c;用于检查需要优化的SQL的运行环境&#xff0c;生成报告以便帮助DBA找到SQL性能不佳的原因。SQLHC是SQLT的一个子集&#xff08;我后续的文章会介绍SQLT&#xff09;&#xff0c;但SQLHC与S…

迁移学习怎么用

如果想实现一个计算机视觉应用&#xff0c;而不想从零开始训练权重&#xff0c;比方从随机初始化开始训练&#xff0c;更快的方式是下载已经训练好权重的网络结构&#xff0c;把这个作为预训练&#xff0c;迁移到你感兴趣的新任务上。ImageNet、PASCAL等等数据库已经公开在线。…

C#,数值计算,希尔伯特矩阵(Hilbert Matrix)的算法与源代码

Hilbert, David (1862-1943) 1 希尔伯特(Hilbert) 德国数学家,在《几何学基础》中提出了第一套严格的几何公理(1899年)。他还证明了自己的系统是自洽的。他发明了一条简单的空间填充曲线,即埃里克魏斯汀的数学世界,即希尔伯特曲线,埃里克魏斯汀的数学世界,并证明了不…

C/C++程序设计实验报告2 | 循环结构实验

本文整理自博主学校大一&#xff08;2021级&#xff09;C/C专业课的课程实验报告&#xff0c;适合学弟妹或C语言初学者入门C语言学习、练习。 编译器&#xff1a;gcc 10.3.0 ---- 注&#xff1a; 1.虽然课程名为C程序设计&#xff0c;但实际上当时校内该课的内容大部分其实都是…

ElasticSearch学习篇10_Lucene数据存储之BKD动态磁盘树

前言 基础的数据结构如二叉树衍生的的平衡二叉搜索树通过左旋右旋调整树的平衡维护数据&#xff0c;靠着二分算法能满足一维度数据的logN时间复杂度的近似搜索。对于大规模多维度数据近似搜索&#xff0c;Lucene采用一种BKD结构&#xff0c;该结构能很好的空间利用率和性能。 …

查找jdk的安装

方式1&#xff1a;which或者where java which java -- linux where java --windows 方式2: echo 使用echo 打印配置的java home环境变量 echo $JAVA_HOME$ --linux echo %JAVA_HOME% --windows 方式3&#xff1a;使用ls -lrt -a &#xff1a;显示所有文件即目录…