【数理统计实验(三)】假设检验的R实现

🍉CSDN小墨&晓末:https://blog.csdn.net/jd1813346972

   个人介绍: 研一|统计学|干货分享
         擅长Python、Matlab、R等主流编程软件
         累计十余项国家级比赛奖项,参与研究经费10w、40w级横向

文章目录

  • 1 不同情形下检验方式
    • 1.1 单正态总体参数的检验
    • 1.2 两正态总体参数的检验
    • 1.3 成对数据的t检验
    • 1.4 单样本比率的检验、两样本比率的检验
  • 2 题目实战
    • 2.1 题目一:z/u检验
    • 2.2 题目二:z/u(t)检验
    • 2.3 题目三:t检验
    • 2.4 题目四:t检验
    • 2.5 题目五:t检验
    • 2.6 题目六:t检验
    • 2.7 题目七:t检验
    • 2.8 题目八:t检验
    • 2.9 题目九:F检验
    • 2.10 题目十:F检验
    • 2.11 题目十一:F(t)检验
    • 2.12 题目十二:z/u检验
    • 2.13 题目十三:两样本比率检验
    • 2.14 题目十四:大样本检验
    • 2.15 题目十五:单样本比率检验
    • 2.16 题目十六:卡方检验
    • 2.17 题目十七:似然检验
    • 2.18 题目十八:Fisher精确检验

该篇文章首先介绍了样本不同情形下的检验方式:单正态总体参数的z/t/卡方检验;两正态总体参数的t/F检验;成对数据的t检验;单样本比率检验、两样本比率检验,然后以例题的形式使用R语言编程结合题目背景完成不同情形下的假设检验并给出详细分析。

1 不同情形下检验方式

1.1 单正态总体参数的检验

  (1)方差 σ 2 \sigma^2 σ2已知时, μ \mu μ的检验:Z检验。

z.test()

  (2)方差 σ 2 \sigma^2 σ2未知时, μ \mu μ的检验:t检验。

t.test()

  (3)方差 σ 2 \sigma^2 σ2的检验: χ 2 \chi ^2 χ2检验。

chisq.var.test( )

1.2 两正态总体参数的检验

  (1)均值的比较:t检验。

t.test(x, y, var.equal=TRUE)

  (2)方差的比较:F检验。

var.test(x, y)

1.3 成对数据的t检验

t.test(x, y, paired=TRUE)

1.4 单样本比率的检验、两样本比率的检验

prop.test( )函数调用格式:prop.test(x, n, p = NULL,alternative = c("two.sided", "less", "greater"),conf.level = 0.95, correct = TRUE)
x为样本中具有某种特性的样本数量, n为样本容量, correct选项为是否做连续性校正。

2 题目实战

2.1 题目一:z/u检验

  有一枪弹,出厂时,其初速率v~N(950,100)(单位:m/s).经过较长时间储存,取9发进行测试,得样本值(单位:m/s)如下:914 920 910 934 953 945 912 924 940。据经验,枪弹经储存后其初速率仍服从正态分布,且标准差保持不变,问是否可以认为这批枪弹的初速率有显著降低。 α = 0.05 \alpha=0.05 α=0.05

  运行程序:

z.test<-function(x,n,sigma,alpha,u0=0,alternative="two.sided"){ options(digits=6)   #结果显示6为有效数result<-list()      #构造一个空的list,用于存放输出结果mean<-mean(x)       #求x的算术平均值z<-(mean-u0)/(sigma/sqrt(n))   #计算z统计量的值p<-pnorm(z,lower.tail=FALSE)   #返回值是正态分布的分布函数值   result$mean<-mean   #将均值存入结果result$z<-z         #将z值存入结果   result$p.value<-p   #得出P值根据其判定参数估计效果ifelse(alternative=="two.sided",result$p.value <- 2*(1-pnorm(abs(z))),    #双侧检验ifelse(alternative=="less",result$p.value <- pnorm(z,lower.tail=T),  #下侧检验ifelse(alternative=="greater",result$p.value <-pnorm(z,lower.tail=F),#上侧检验return("your input is wrong"))))result$conf.int<-c(mean-sigma*qnorm(1-alpha/2,mean=0,sd=1,lower.tail=TRUE)/sqrt(n),mean+sigma*qnorm(1-alpha/2,mean=0,sd=1,lower.tail=TRUE)/sqrt(n))result
}
#调用z.test()函数
z.test(928,9,10,0.05,u0=950,alternative="less") #函数中对应的值分别为样本均值、样本数量、总体标准差、置信水平、检验初速率

  运行结果:

  通过u检验的运行结果可以看出z统计量的值为-6.6,置信区间为[921.476, 934.533],p值= 2.05579 e − 11 < 0.05 2.05579e^{-11}<0.05 2.05579e11<0.05,故拒绝原假设,即可以认为这批枪弹的初速率有显著降低。

2.2 题目二:z/u(t)检验

  从一批钢管抽取10根,测得期内径(单位:mm)为:

  100.36 100.31 99.99 100.11 100.64

  100.85 99.42 99.91 99.35 100.10

  设这批钢管内径服从正态分布N(μ,σ2),试分别在下列条件下检验假设。设(α=0.05)。H0:μ=100 vs H1:μ>100。

(1)已知σ=0.5;(z/u检验)

  运行程序:

z.test(100.104,10,0.5,0.05,u0=100,alternative="less")#将样本均值、样本数量、总体标准差、置信水平、u0带入计算出均值、检验统计量的值、p值、置信区间。

  运行结果:

  通过u检验的运行结果可以看出z统计量的值为0.657754,置信区间为[99.7941,100.4139],p值=0.744652>0.05,故接受原假设,即不能认为这批钢管内径大于100。

(2)σ未知。(t检验)

  运行程序:

salt<-c(100.36,100.31,99.99,100.11,100.64,100.85,99.42,99.91,99.35,100.1)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=100,alternative="greater")#将u0等于100带入调用的t检验函数

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为0.691,p值=0.254>0.05,故接受原假设,即不能认为这批钢管内径大于100。

2.3 题目三:t检验

  考察一鱼塘中鱼的含汞量,随机的取10条鱼测得各鱼的含汞量(单位:mg)为:

  0.8 1.6 0.9 0.8 1.2 0.4 0.7 1.0 1.2 1.1

  设鱼的含汞量服从正态分布N(μ,σ2),试检验假设H0:μ<=1.2 vs H1:μ>1.2 (取α=0.1)。

  运行程序:

salt <- c(0.8,1.6,0.9,0.8,1.2,0.4,0.7,1,1.2,1.1)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=1.2,alternative="greater",conf.level=0.9)#将u0等于1.2带入调用的t检验函数

  运行结果:

通过t检验的运行结果可以看出t统计量的值为-2.203,p值=0.972>0.05,故接受原假设,即鱼的含汞量没有大于1.2。

2.4 题目四:t检验

  如果一个矩形的宽度w与长度l的比w/l=1/2(√5-1)≈0.618,这样的矩形称为黄金矩形。下面列出从某工艺品工厂随机抽取的20个矩形的长度与宽度的比值.

  0.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628

  0.668 0.611 0.606 0.609 0.553 0.570 0.844 0.576 0.933 0.630

  设这一工厂生产的矩形长度与宽度的比值总体服从正态分布其均值未μ,试

  求检验假设(取α=0.05)。

  H0:μ=0.618 vs H1:μ≠0.618。

  运行程序:

salt<-c(0.693,0.749,0.654,0.67,0.662,0.672,0.615,0.606,0.69,0.628,0.668,0.611,0.606,0.609,0.553,0.57,0.844,0.576,0.933,0.63)#将样本各个数据定义为一个向量,便于调用
t.test(salt,mu=0.618,alternative="two.sided")#将u0等于0.618带入调用的t检验函数

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为2.142,p值=0.0453<0.05,故拒绝原假设,即不能认为工厂生产的矩形长度与宽度的比值等于0.618。

2.5 题目五:t检验

  下面给出两种型号的计算器充电以后所能使用的时间(单位:h)的观测值
  型号A:5.5 5.6 6.3 4.6 5.3 5.0 6.2 5.8 5.1 5.2 5.9,
  型号B:3.8 4.3 4.2 4.0 4.9 4.5 5.2 4.8 4.5 3.9 3.7 4.6.
  设两样本独立且数据所属的两总体的密度函数至多差一个平移量,试问能否
  认为型号A的计算器平均使用时间比型号B来的长(取α=0.01)?

  运行程序:

x <- c(5.5,5.6,6.3,4.6,5.3,5.0,6.2,5.8,5.1,5.2,5.9)#将型号A的每一个样本值弄成向量
y <- c(3.8,4.3,4.2,4.0,4.9,4.5,5.2,4.8,4.5,3.9,3.7,4.6)#将型号B的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为5.484,p值=1.93e-05<0.05,故拒绝原假设,即能认为型号A的计算器平均使用时间比型号B来的长。

2.6 题目六:t检验

  在针织品漂白工艺过程中,要考察温度对针织品断裂强力(主要质量标准)的影响.为了比较70oC与80oC的影响有无差别,在这两个温度下,分别重复做了8次试验,得数据如下(单位:N):

  70oC时的强力:20.5 18.8 19.8 20.9 21.5 19.5 21.0 21.2

  80oC时的强力:17.7 20.3 20.0 18.8 19.0 20.1 20.0 19.1

  根据经验,温度对针织品断裂强度的波动没有影响.问在70oC时的平均断裂强力与80oC时的平均断裂强力间是否有显著差别?(假定断裂强力服从正态分布,α=0.05)。

  运行程序:

x <- c(20.5,18.8,19.8,20.9,21.5,19.5,21.0,21.2)#将70摄氏度时强力的每一个样本值弄成向量
y <- c(17.7,20.3,20.0,18.8,19.0,20.1,20.0,19.1)#将80摄氏度时强力的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为2.241,p值=0.0418<0.05,故拒绝原假设,即在70oC时的平均断裂强力与80oC时的平均断裂强力间有显著差别。

2.7 题目七:t检验

  对冷却到-0.72℃的样品用A,B两种测量方法测量其融化到0℃时的潜热,数据如下:

  方法A:79.98 80.04 80.02 80.04 80.03 80.03 80.04 79.97 80.05 80.03 80.02 80.00 80.02

  方法B:80.02 79.94 79.98 79.97 80.03 79.95 79.97 79.97

  假设它们服从正态分布,方差相等,试试验:两种测量方法的平均性能是否相等?(取α=0.05)。

  运行程序:

x<-c(79.98,80.04,80.02,80.04,80.03,80.03,80.04,79.97,80.05,80.03,80.02,80.00,80.02)#将使用方法A的每一个样本值弄成向量
y <- c(80.02,79.94,79.98,79.97,80.03,79.95,79.97,79.97)#将使用方法B的每一个样本值弄成向量
t.test(x,y,var.equal=TRUE)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为3.472,p值=0.00255<0.05,故拒绝原假设,两种测量方法的平均性能不相等。

2.8 题目八:t检验

  为了比较测定活水中氯气含量的两种方法,特在各种场合收集到8个污水水样,每个水样均用这两种方法测定氯气含量(单位:mg/l),具体数据如下:

  设总体为正态分布,试比较两种测定方法是否有显著差异,请写出检验的p值和结论(取α=0.05)。

  运行程序:

x <- c(-0.03, 0.51,0.8,0.57,0.66,0.63,0.18,-0.01)#将差值的到的每一个样本差值弄成向量
t.test(x,mu=0)#利用t检验函数进行检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为3.645,p值=0.00823<0.05,故拒绝原假设,两种测量方法有显著差异。

2.9 题目九:F检验

  为比较不同季节出生的女婴体重的方差,从某年12月和6月出生的女婴中分别随机地抽取6名及10名,测其体重(单位:g)如下:

  12月:3520 2960 2560 3260 3960,

  06月:3220 3220 3760 3000 2920 3740 3060 3080 2940 3060.

  假定新生女婴体重服从正态分布,问新生女婴体重的方差是否是冬季比夏季的小(取α=0.05)?

  运行程序:

x <- c(3520,2960,2560,2960,3260,3960)#将12月份每个女婴的体重弄成向量
y <- c(3220,3220,3760,3000,2920,3740,3060,3080,2940,3060)#将6月份每个女婴的体重弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为2.572,p值=0.207>0.05,故接受原假设,即认为新生女婴体重的方差冬季不比夏季的小。

2.10 题目十:F检验

  两台车床生产同一种滚珠,滚珠直径服从正态分布。从中分别抽取8个和9个产品,测得其直径为

  甲车床:15.0 14.5 15.2 15.5 14.8 15.1 15.2 14.8;

  乙车床:15.2 15.0 14.8 15.2 15.0 15.0 14.8 15.1 14.8.

  比较两台车床生产的滚珠直径的方差是否有明显差异(取α=0.05)。

  运行程序:

x <- c(15.0,14.5,15.2,15.5,14.8,15.1,15.2,14.8)#将甲车床生产的滚珠直径样本值弄成向量
y <- c(15.2,15.0,14.8,15.2,15.0,15.0,14.8,15.1,14.8)#将乙车床生产的滚珠直径样本值弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为3.659,p值=0.0892>0.05,故接受原假设,即认为两台车床生产的滚珠直径的方差没有明显差异。

2.11 题目十一:F(t)检验

  测得两批电子器件的样品的电阻(单位:Ω)为

  A批(x):0.140 0.138 0.143 0.142 0.144 0.137;

  B批(y):0.135 0.140 0.142 0.136 0.138 0.140.

  设这两批器材的电阻值分别服从分布N(μ1,σ1²),N(μ2,σ2²),且两样本独立。

(1)试检验两个总体的方差是否相等(取α=0.05)?:F检验

  运行程序:

x <- c(0.140,0.138,0.143,0.142,0.144,0.137)#将A批样本电阻值弄成向量
y <- c(0.135,0.140,0.142,0.136,0.138,0.140)#将B批样本电阻值弄成向量
var.test(x,y)#对假设检验进行F检验

  运行结果:

  通过F检验的运行结果可以看出F统计量的值为1.108,p值=0.913>0.05,故接受原假设,即可以认为两总体的方差相等。

(2)试检验两个总体的均值是否相等(取α=0.05)?:t检验

  运行程序:

x <- c(0.140,0.138,0.143,0.142,0.144,0.137)#将A批样本电阻值弄成向量
y <- c(0.135,0.140,0.142,0.136,0.138,0.140)#将B批样本电阻值弄成向量
t.test(x,y,var.equal=TRUE)#对假设检验进行t检验

  运行结果:

  通过t检验的运行结果可以看出t统计量的值为1.372,p值=0.2>0.05,故接受原假设,即可以认为两总体的均值相等。

2.12 题目十二:z/u检验

  从一批服从指数分布的产品中抽取10个进行寿命试验,观测值如下(单位:h):

  1643 1629 426 132 1522 432 1759 1074 528 283.

  根据这批数据能否认为其平均寿命不低于1100h(取α=0.05)?

  运行程序:

z.test=function(x,mu,sigma,theta,alternative="two.sided"){n=length(x)result=list()  #构造一个空的list,用于存放输出结果mean=mean(x)z=2*n*mean/theta#计算z统计量的值options(digits=4)#结果显示至小数点后4位result$mean=mean;result$z=z  #将均值、z值存入结果result$P=2*pnorm(abs(z),lower.tail=FALSE) #根据z计算Pif(alternative=="greater") result$P=pnorm(z,lower.tail=FALSE)else if(alternative=="less") result$P=pnorm(z)result}
data=c(1643,1629,426,132,1522,432,1759,1074,528,283)
z.test(x=data,theta=1100,alternative="less")

  运行结果:

  接受原假设,可以认为其平均寿命不低于1100h。

2.13 题目十三:两样本比率检验

  某大学随机调查120名男同学,发现有50人非常喜欢看武侠小说,而随机查的85名女同学中有23人喜欢,用大样本检验方法在α=0.05下确认:男女同学在喜爱武侠小说方面有无显著差异?并给出检验的p值。

  运行程序:

n <-c (50,23)   #样本中喜欢看武侠小说的人数
m <-c (120,85)   #两样本的样本容量
prop.test(n,m) #选取大样本检验

  运行结果:

  通过大样本检验的运行结果可以看出X统计量为4.015,p值=0.0451<0.05,故拒绝原假设,即认为男女同学在喜爱武侠小说方面有显著差异。

2.14 题目十四:大样本检验

  若在猜硬币正反面游戏中,某人在100次试猜中共猜中60次,你认为他是否有诀窍?(取α=0.05)。

  运行程序:

binom.test(60,100,p=0.5,alternative="greater")
#使用binom.test()进行大样本检测

  运行结果:

  通过大样本检验的运行结果可以看出p值=0.0284<0.05,故拒绝原假设,即认为他有诀窍。

2.15 题目十五:单样本比率检验

  若在猜硬币正反面游戏中,某人在100次试猜中共猜中60次,你认为他是否有诀窍?(取α=0.05)。

  运行程序:

prop.test(60,100,correct=TRUE)

  运行结果:

  接受原假设,有诀窍。

2.16 题目十六:卡方检验

  检查了一本书的100页,记录各页中的印刷错误的个数,其结果如下:

  问能否认为一页的印刷错误个数服从泊松分布?(取α=0.05)。

  运行程序:

z<-(35+40+19+3+2+1)/100  
chisq.fit<-function(x,y,r){options(digits=4)   #结果显示至小数点后4位result<-list()   #构造一个空的list,用于存放输出结果n<-sum(y)prob<-dpois(x,z,log=FALSE)   #z为极大似然估计值y<-c(y,0)m<-length(y)   #m的长度为yprob<-c(prob,1-sum(prob))result$chisq<-sum((y-n*prob)^2/(n*prob))result$p.value<-pchisq(result$chisq,m-r-1,lower.tail=FALSE)result
}x<-c(0,1,2,3,4,5)
y<-c(35,40,19,3,2,1)
chisq.fit(x,y,1)

  运行结果:

  通过运行结果,可以看出p值=0.5849>0.05,故接受原假设,即认为一页的印刷错误个数服从泊松分布。

2.17 题目十七:似然检验

  某种配偶的后代按体格的属性分为三类,各类的数目分别是10,53,46.按照某种遗传模型其频率之比应为p²:2p(1-p):(1-p)²,问数据与模型是否相符(α=0.05)?

  运行程序:

N<-c(10,53,46)
n<-N[1]+N[2]+N[3]
f<-function(p){   #定义函数f用以表示似然函数p^(2*N[1]+N[2])*(1-p)^(N[2]+2*N[3])
}
mle<-optimize(f,c(0,1),maximum = TRUE)   #求极大似然估计
a<-mle$maximum   #所求极大似然估计
b<-c(a^2,2*a*(1-a),(1-a)^2)   #b分别表示p1,p2,p3的值
c<-(N[1]-n*b[1])^2/(n*b[1])+(N[2]-n*b[2])^2/(n*b[2])+(N[3]-n*b[3])^2/(n*b[3])
p<-1-pchisq(c,1)
a
b
c
p

运行结果:

  通过运行结果,可以看出p值=0.3392>0.05,故接受原假设,即认为数据与模型相符合。

2.18 题目十八:Fisher精确检验

  一项是否应提高小学生的计算机课程的比例的调查结果如下:

  问年龄因素是否影响了对问题的回答(α=0.05)?

  运行程序:

a<-matrix(c(32,44,47,28,21,12,14,17,13),
nr=3,   #分类组数为3dimnames=list(c("55+","36~55","15~35"),c("agree","disagree","don't know")))
fisher.test(a)   #Fisher精确检验

  运行结果:

  通过运行结果,可以看出p值=0.05≤0.05,故拒绝原假设,即认为年龄因素影响了对问题的回答。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/744021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【linux中cd指令使用】cd进入与退出路径

【linux中cd指令使用】cd如何进入与退出路径 1、cd进入指定路径&#xff0c;比如我要进入下面这个路径中去运行setup.py文件&#xff0c;如果我不跳转到该路径下直接运行&#xff0c;会报错找不到该文件 cd空格路径&#xff0c;即可跳转到该路径 cd /public2/xxx/tiny-cuda…

鸿蒙不再适合JS语言开发

ArkTS是鸿蒙生态的应用开发语言。它在保持TypeScript&#xff08;简称TS&#xff09;基本语法风格的基础上&#xff0c;对TS的动态类型特性施加更严格的约束&#xff0c;引入静态类型。同时&#xff0c;提供了声明式UI、状态管理等相应的能力&#xff0c;让开发者可以以更简洁、…

Pytorch入门-Transforms

文章目录 ComposeToTensorNormalizeResize 在PyTorch中&#xff0c;transforms是一个用于图像预处理和数据增强的模块&#xff0c;通常与torchvision库一起使用。torchvision提供了大量预先定义的transforms&#xff0c;它们可以方便地应用于图像数据&#xff0c;以进行预处理或…

突破内网限制,自由访问 NAS:网络穿透方案大合集! | 开源日报 No.199

anderspitman/awesome-tunneling Stars: 12.2k License: NOASSERTION awesome-tunneling 是一个列出 ngrok 替代方案和其他类似 ngrok 的隧道软件和服务的项目&#xff0c;重点是自托管。 主要面向自托管者和开发人员。提供注册域名并将记录自动指向运行隧道的服务器。自动设…

疯狂数钞票H5游戏

移动端微信h5 <template><div class"container" id"container"><div class"regBag"></div><div class"moneyBox"><transitionv-for"(item,index) in showImgList":key"index"…

这个班要不还是别上了吧。

先不提代码写得对不对。咱就是说&#xff0c;打印语句都出不来&#xff0c;搞个chuanchuan哟。 &#xff08;谁能给我解释一下。。&#x1f643;&#xff09;

芯片架构设计及其作用

芯片架构设计是芯片流片前很重要的一个环节&#xff0c;俗称pre-silicon&#xff0c;芯片架构设计的好坏&#xff0c;决定了芯片产品的质量&#xff0c;决定了芯片产品是否易用&#xff0c;决定了芯片产品的性能&#xff0c;决定了芯片产品在市场上是否具有持久性。芯片生产是个…

公众号怎么转移主体

公众号迁移有什么作用&#xff1f;只能变更主体吗&#xff1f;长期以来&#xff0c;由于部分公众号在注册时&#xff0c;主体不准确的历史原因&#xff0c;或者公众号主体发生合并、分立或业务调整等现实状况&#xff0c;在公众号登记主体不能对应实际运营人的情况下&#xff0…

阿里云服务器ECS--安全,稳定,购买灵活,低成本

阿里云服务器ECS英文全程Elastic Compute Service&#xff0c;云服务器ECS是一种安全可靠、弹性可伸缩的云计算服务&#xff0c;阿里云提供多种云服务器ECS实例规格&#xff0c;如ECS经济型e实例、通用算力型u1、ECS计算型c7、通用型g7、GPU实例等&#xff0c;阿里云服务器网al…

基于Spring Boot的疗养院管理系统的设计与实现

传统办法管理信息首先需要花费的时间比较多&#xff0c;其次数据出错率比较高&#xff0c;而且对错误的数据进行更改也比较困难&#xff0c;最后&#xff0c;检索数据费事费力。因此&#xff0c;在计算机上安装疗养院管理系统软件来发挥其高效地信息处理的作用&#xff0c;可以…

Verovio简介及在Windows10和Ubuntu 22.04上编译过程

Verovio是一个快速、便携、轻量级的开源库&#xff0c;用于将音乐编码倡议(Music Encoding Initiative(MEI))数字乐谱雕刻到SVG图像中。Verovio还包含即时转换器(on-the-fly converters)用于渲染Plaine & Easie Code、Humdrum、Musedata、MusicXML、EsAC和ABC数字乐谱。源代…

零知识玩转AVH(4)—— 怎么玩(3)

接前一篇文章&#xff1a;零知识玩转AVH&#xff08;3&#xff09;—— 怎么玩&#xff08;2&#xff09; 上一回讲解了“arm-avh-best-practice-project-product-subscription-guide-cn.pdf”即“Arm虚拟硬件实践专题一&#xff1a;产品订阅指南&#xff08;百度智能云版&…

python爬虫(9)之requests模块

1、获取动态加载的数据 1、在开发者工具中查看动态数据 找到csdn的门户的开发者工具后到这一页面。 2、加载代码 import requests headers {User-Agent:Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/122.0.0.0 Safari/537.36…

2024阿里技术官重磅推出“Java进阶必备宝典” 5大专题 6000字解析

5.JVM实战 CPU占用过高案例实战 内存占用过高案例实战 15种方式编写高效优雅Java程序实战 6.JVM底层技术 亿级流量高井发下GC预估与调优 JHSDB工具透视L ambda底层实现 JVM(HotSpot)核心源码解读 JVM核心模块(GC算法)手写实战 核心三&#xff1a;网络编程与高效IO 1.网络…

C#制作软件时窗体的弹出与嵌入

文章目录 一、窗体的弹出二、窗体的嵌入 一、窗体的弹出 这里面我们以Windows窗体应用程序为例&#xff0c;这里面达到的效果如下&#xff1a; 点击指定按钮&#xff0c;弹出目标窗口。接下来我们看具体操作&#xff1a; 这是我们的主窗体&#xff1a; 接下来我们需要在这个…

Stable Diffusion 模型下载:Juggernaut(主宰、真实、幻想)

本文收录于《AI绘画从入门到精通》专栏&#xff0c;专栏总目录&#xff1a;点这里。 文章目录 模型介绍生成案例案例一案例二案例三案例四案例五案例六案例七案例八 下载地址 模型介绍 该模型是一个真实模型&#xff0c;并且具有幻想和创意色彩。 作者述&#xff1a;我选取了…

RabbitMQ备份交换机与优先级队列

1. 备份交换机 备份交换机可以理解为 RabbitMQ 中交换机的“备胎”&#xff0c;当我们为某一个交换机声明一个对应的备份交换机时&#xff0c;就是为它创建一个备胎&#xff0c;当交换机接收到一条不可路由消息时&#xff0c;将会把这条消息转发到备份交换机中&#xff0c;由备…

1. 用两种方式在springboot项目中实现适配器模式

文章目录 用两种方式在springboot项目中实现适配器模式1. 场景2. 方式1&#xff0c;通过实现类定义类型字段实现2.1 创建接口2.2 创建mysql实现类2.3 创建oracle实现类2.4 创建接口,在接口中注入service集合&#xff0c;根据每个实现类中定义的dbType进行匹配后进行调用2.5 测试…

幼猫咬不动猫粮该怎么办?

亲爱的猫友们&#xff0c;遇到幼猫咬不动猫粮的情况&#xff0c;是不是很让人着急呢&#xff1f;别担心&#xff0c;让我们一起来探讨一下解决这个问题的方法。&#x1f431;&#x1f35a; 首先&#xff0c;我们得理解幼猫的牙齿和消化系统发育还不够成熟&#xff0c;所以咬不动…

Arduino ESP8266 SSD1306 硬件I2C+LittleFS存储GBK字库实现中文显示

Arduino ESP8266 SSD1306 硬件I2C+LittleFS存储GBK字库实现中文显示 📍相关篇《Arduino esp8266 软件I2C SSD1306 +LittleFS存储GBK字库实现中文显示》 🌼显示效果: ✨将部分函数重构,和上面相关篇的软件I2C通讯相关接口函数移植过来,除了汉字显示采用自己写的API函数外…