基于深度学习的图像去雨去雾

基于深度学习的图像去雨去雾


文末附有源码下载地址
b站视频地址: https://www.bilibili.com/video/BV1Jr421p7cT/

基于深度学习的图像去雨去雾,使用的网络为unet,
网络代码:

import torch
import torch.nn as nn
from torchsummary import summary
from torchvision import models
from torchvision.models.feature_extraction import create_feature_extractor
import torch.nn.functional as F
from torchstat import statclass Resnet18(nn.Module):def __init__(self):super(Resnet18, self).__init__()self.resnet = models.resnet18(pretrained=False)# self.resnet = create_feature_extractor(self.resnet, {'relu': 'feat320', 'layer1': 'feat160', 'layer2': 'feat80',#                                                'layer3': 'feat40'})def forward(self,x):for name,m in self.resnet._modules.items():x=m(x)if name=='relu':x1=xelif name=='layer1':x2=xelif name=='layer2':x3=xelif name=='layer3':x4=xbreak# x=self.resnet(x)return x1,x2,x3,x4
class Linears(nn.Module):def __init__(self,a,b):super(Linears, self).__init__()self.linear1=nn.Linear(a,b)self.relu1=nn.LeakyReLU()self.linear2 = nn.Linear(b, a)self.sigmoid=nn.Sigmoid()def forward(self,x):x=self.linear1(x)x=self.relu1(x)x=self.linear2(x)x=self.sigmoid(x)return x
class DenseNetBlock(nn.Module):def __init__(self,inplanes=1,planes=1,stride=1):super(DenseNetBlock,self).__init__()self.conv1=nn.Conv2d(inplanes,planes,3,stride,1)self.bn1 = nn.BatchNorm2d(planes)self.relu1=nn.LeakyReLU()self.conv2 = nn.Conv2d(inplanes, planes, 3,stride,1)self.bn2 = nn.BatchNorm2d(planes)self.relu2 = nn.LeakyReLU()self.conv3 = nn.Conv2d(inplanes, planes, 3,stride,1)self.bn3 = nn.BatchNorm2d(planes)self.relu3 = nn.LeakyReLU()def forward(self,x):ins=xx=self.conv1(x)x=self.bn1(x)x=self.relu1(x)x = self.conv2(x)x = self.bn2(x)x = self.relu2(x)x=x+insx2=self.conv3(x)x2 = self.bn3(x2)x2=self.relu3(x2)out=ins+x+x2return out
class SEnet(nn.Module):def __init__(self,chs,reduction=4):super(SEnet,self).__init__()self.average_pooling = nn.AdaptiveAvgPool2d(output_size=(1, 1))self.fc = nn.Sequential(# First reduce dimension, then raise dimension.# Add nonlinear processing to fit the correlation between channelsnn.Linear(chs, chs // reduction),nn.LeakyReLU(inplace=True),nn.Linear(chs // reduction, chs))self.activation = nn.Sigmoid()def forward(self,x):ins=xbatch_size, chs, h, w = x.shapex=self.average_pooling(x)x = x.view(batch_size, chs)x=self.fc(x)x = x.view(batch_size,chs,1,1)return x*ins
class UAFM(nn.Module):def __init__(self):super(UAFM, self).__init__()# self.meanPool_C=torch.max()self.attention=nn.Sequential(nn.Conv2d(4, 8, 3, 1,1),nn.LeakyReLU(),nn.Conv2d(8, 1, 1, 1),nn.Sigmoid())def forward(self,x1,x2):x1_mean_pool=torch.mean(x1,dim=1)x1_max_pool,_=torch.max(x1,dim=1)x2_mean_pool = torch.mean(x2, dim=1)x2_max_pool,_ = torch.max(x2, dim=1)x1_mean_pool=torch.unsqueeze(x1_mean_pool,dim=1)x1_max_pool=torch.unsqueeze(x1_max_pool,dim=1)x2_mean_pool=torch.unsqueeze(x2_mean_pool,dim=1)x2_max_pool=torch.unsqueeze(x2_max_pool,dim=1)cat=torch.cat((x1_mean_pool,x1_max_pool,x2_mean_pool,x2_max_pool),dim=1)a=self.attention(cat)out=x1*a+x2*(1-a)return outclass Net(nn.Module):def __init__(self):super(Net, self).__init__()self.resnet18=Resnet18()self.SENet=SEnet(chs=256)self.UAFM=UAFM()self.DenseNet1=DenseNetBlock(inplanes=256,planes=256)self.transConv1=nn.ConvTranspose2d(256,128,3,2,1,output_padding=1)self.DenseNet2 = DenseNetBlock(inplanes=128, planes=128)self.transConv2 = nn.ConvTranspose2d(128, 64, 3, 2, 1, output_padding=1)self.DenseNet3 = DenseNetBlock(inplanes=64, planes=64)self.transConv3 = nn.ConvTranspose2d(64, 64, 3, 2, 1, output_padding=1)self.transConv4 = nn.ConvTranspose2d(64, 32, 3, 2, 1, output_padding=1)self.DenseNet4=DenseNetBlock(inplanes=32,planes=32)self.out=nn.Sequential(nn.Conv2d(32,3,1,1),nn.Sigmoid())def forward(self,x):"""下采样部分"""x1,x2,x3,x4=self.resnet18(x)# feat320=features['feat320']# feat160=features['feat160']# feat80=features['feat80']# feat40=features['feat40']feat320=x1feat160=x2feat80=x3feat40=x4"""上采样部分"""x=self.SENet(feat40)x=self.DenseNet1(x)x=self.transConv1(x)x=self.UAFM(x,feat80)x=self.DenseNet2(x)x=self.transConv2(x)x=self.UAFM(x,feat160)x = self.DenseNet3(x)x = self.transConv3(x)x = self.UAFM(x, feat320)x=self.transConv4(x)x=self.DenseNet4(x)out=self.out(x)# out=torch.concat((out,out,out),dim=1)*255.return outdef freeze_backbone(self):for param in self.resnet18.parameters():param.requires_grad = Falsedef unfreeze_backbone(self):for param in self.resnet18.parameters():param.requires_grad = Trueif __name__ == '__main__':net=Net()print(net)# stat(net,(3,640,640))summary(net,input_size=(3,512,512),device='cpu')aa=torch.ones((6,3,512,512))out=net(aa)print(out.shape)# ii=torch.zeros((1,3,640,640))# outs=net(ii)# print(outs.shape)

主题界面显示及代码:
在这里插入图片描述

from PyQt5.QtGui import *
from PyQt5.QtWidgets import *
from untitled import Ui_Form
import sys
import cv2 as cv
from PyQt5.QtCore import QCoreApplication
import numpy as np
from PyQt5 import QtCore,QtGui
from PIL import Image
from predict import *class My(QMainWindow,Ui_Form):def __init__(self):super(My,self).__init__()self.setupUi(self)self.setWindowTitle('图像去雨去雾')self.setIcon()self.pushButton.clicked.connect(self.pic)self.pushButton_2.clicked.connect(self.pre)self.pushButton_3.clicked.connect(self.pre2)def setIcon(self):palette1 = QPalette()# palette1.setColor(self.backgroundRole(), QColor(192,253,123))   # 设置背景颜色palette1.setBrush(self.backgroundRole(), QBrush(QPixmap('back.png')))  # 设置背景图片self.setPalette(palette1)def pre(self):out=pre(self.img,0)out=self.cv_qt(out)self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))def pre2(self):out=pre(self.img,1)out=self.cv_qt(out)self.label_2.setPixmap(QPixmap.fromImage(out).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio))def pic(self):imgName, imgType = QFileDialog.getOpenFileName(self,"打开图片",""," *.png;;*.jpg;;*.jpeg;;*.bmp;;All Files (*)")#KeepAspectRatiopng = QtGui.QPixmap(imgName).scaled(self.label.width(),self.label.height(),QtCore.Qt.KeepAspectRatio)  # 适应设计label时的大小self.label.setPixmap(png)self.img=Image.open(imgName)self.img=np.array(self.img)def cv_qt(self, src):#src必须为bgr格式图像#src必须为bgr格式图像#src必须为bgr格式图像if len(src.shape)==2:src=np.expand_dims(src,axis=-1)src=np.tile(src,(1,1,3))h, w, d = src.shapeelse:h, w, d = src.shapebytesperline = d * w# self.src=cv.cvtColor(self.src,cv.COLOR_BGR2RGB)qt_image = QImage(src.data, w, h, bytesperline, QImage.Format_RGB888).rgbSwapped()return qt_imageif __name__ == '__main__':QCoreApplication.setAttribute(QtCore.Qt.AA_EnableHighDpiScaling)app=QApplication(sys.argv)my=My()my.show()sys.exit(app.exec_())

项目结构:
在这里插入图片描述
直接运行main.py即可弹出交互界面。
项目下载地址:下载地址-列表第19

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/743444.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

拼图小游戏制作教程:用HTML5和JavaScript打造经典游戏

🌟 前言 欢迎来到我的技术小宇宙!🌌 这里不仅是我记录技术点滴的后花园,也是我分享学习心得和项目经验的乐园。📚 无论你是技术小白还是资深大牛,这里总有一些内容能触动你的好奇心。🔍 &#x…

【数据结构】栈与队列的“双向奔赴”

目录 前言 1.使用“栈”检查符号是否成对出现 2.使用“栈”实现字符串反转 3.使用“队列”实现“栈” 4.使用“栈”实现“队列” 前言 什么是栈? 栈(stack)是一种特殊的线性数据集合,只允许在栈顶按照后进先出LIFO&#xff…

网上商城购物系统|基于springboot框架+ Mysql+Java+B/S架构的网上商城购物系统设计与实现(可运行源码+数据库+设计文档+部署说明)

推荐阅读100套最新项目 最新ssmjava项目文档视频演示可运行源码分享 最新jspjava项目文档视频演示可运行源码分享 最新Spring Boot项目文档视频演示可运行源码分享 目录 前台功能效果图 管理员功能登录前台功能效果图 用户功能模块 系统功能设计 数据库E-R图设计 lunwen参…

ip广播智慧工地广播喊话号角 IP网络号角在塔吊中应用 通过寻呼话筒预案广播

ip广播智慧工地广播喊话号角 IP网络号角在塔吊中应用 通过寻呼话筒预案广播 SV-704XT是深圳锐科达电子有限公司的一款壁挂式网络有源号角,具有10/100M以太网接口,可将网络音源通过自带的功放和号角喇叭输出播放,可达到功率50W。SV-704XT内置有…

OneDrive教育版迁移记录

背景 微软再次削减教育版优惠的OneDrive容量,从原先的5T直接砍到100G/人,同时对每个学校保留总共100TB的共享存储容量。 右键Onedrive图标——设置——存储容量可见 100GB对于重度用户显然是不够使用的,为此笔者改换Microsoft Office365家庭…

mac启动skywalking报错

这个命令显示已经成功 但是日志报错了以上内容。 然后去修改。vim .bash_profile 查看全局变量,这个jdk却是有2个。所以这个问题没解决。

【哈希映射】【 哈希集合】 381. O(1) 时间插入、删除和获取随机元素 - 允许重复

作者推荐 视频算法专题 本文涉及知识点 哈希映射 哈希集合 LeetCode 381. O(1) 时间插入、删除和获取随机元素 - 允许重复 RandomizedCollection 是一种包含数字集合(可能是重复的)的数据结构。它应该支持插入和删除特定元素,以及删除随机元素。 实现 Randomiz…

python爬虫实战——小红书

目录 1、博主页面分析 2、在控制台预先获取所有作品页的URL 3、在 Python 中读入该文件并做准备工作 4、处理图文类型作品 5、处理视频类型作品 6、异常访问而被中断的现象 7、完整参考代码 任务:在 win 环境下,利用 Python、webdriver、JavaS…

<.Net>VisaulStudio2022下用VB.net实现socket与汇川PLC进行通讯案例(Eazy521)

前言 此前,我写过一个VB.net环境下与西门子PLC通讯案例的博文: VisaulStudio2022下用VB.net实现socket与西门子PLC进行通讯案例(优化版) 最近项目上会用到汇川PLC比较多,正好有个项目有上位机通讯需求,于是…

[剪藏] - 由哇哈哈和农夫山泉所想到的

哇哈哈和农夫山泉的缠斗最近冒出来一个有趣的点:营销大于内容的胜利。 具体来说是这样的:农夫山泉很多年前做广告,说纯净水没有矿物质,长期喝是不利于人体健康的。农夫还做了个营销的对比实验,大概是用矿泉水养水仙花&…

音视频开发之旅(75)- AI数字人进阶--GeneFace++

目录 1.效果展示和玩法场景 2.GeneFace原理学习 3.数据集准备以及训练的过程 5.遇到的问题与解决方案 6.参考资料 一、效果展示 AI数字人进阶--GeneFace(1) AI数字人进阶--GeneFace(2) 想象一下,一个专为你打造的…

为什么 VSCode 不用 Qt 而要用 Electron?

为什么 VSCode 不用 Qt 而要用 Electron? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「Qt 的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&am…

Python基础课堂最后一课23——正则对象

文章目录 前言一、正则对象是什么?二、正则表达式基本分类1.普通字符2.元字符 总结 前言 很开心能和你们一些学习进步,在这一个多月的时间中,是你们让我坚持了下来,完成了python基础课堂编写,不管如何,我们…

Linux系统——Nginx脚本拦截拓展

可能会有些无聊的人对服务器的Nginx服务进行恶意访问网站、API接口,会影响到用户的体验,我们可以做一个简单的脚本对恶意访问的IP做一个有效的拦截,揪出这些IP地址,然后将其进行禁用。 在Nginx的conf目录下新建一个blockip.conf文…

certificate has expired or is not yet valid:npm和node证书过期问题

在 1 月 22 日,淘宝原镜像域名(registry.npm.taobao.org)的 HTTPS 证书正式到期。如果想要继续使用,需要将 npm 源切换到新的源(registry.npmmirror.com),否则会报错。 解决方案切换到新的源&a…

HTML表单

本文章属于学习笔记,在https://www.freecodecamp.org/chinese/learn/2022/responsive-web-design/中练习 四、HTML表单 CSS 1、vh单位表示视口高度,等于视口高度的1%。这使得它相对于视口高度。height:100vh; 2、设置 body 的默认 margin 为 0 来重置…

【掌握版本控制:Git 入门与实践指南】远程操作|标签管理

🎬慕斯主页:修仙—别有洞天 ♈️今日夜电波:泥中に咲く—ウォルピスカーター 0:34━━━━━━️💟──────── 4:46 🔄 ◀️ ⏸ ▶…

汽车IVI中控开发入门及进阶(十三):语音识别

前言: IVI中控上的语音识别,在目前市场上也是非常显眼的一个创新,大幅改变了传统IVI的操作习惯。 语音识别Speech recognition,也称为自动语音识别(ASR)、计算机语音识别或语音到文本,是一种使程序能够将人类语音处理成书面格式的能力。 语音识别Speech recognition是计…

数码管的静态显示(二)

1.原理 要按照上图的顺序传递位选和段选的数据。 因为q0是最高位,共阳极数码管结构是dp....a,所以应该先传入低位a,而a在上图中的8段2进制编码中是seg[7],所以段选信号的顺序是seg[0],...seg[7]。 因为输出信号是两个时钟&#x…

Docker入门笔记(1)

Docker入门笔记(1) 容器技术入门 之前我的WIT问卷管理系统在阿里云上部署需要好多配置,各个环境耦合的比较紧密,花了不少时间去做部署和调配。 现在有了Docker以后,我们可以把各种组件配置好,然后打包成…