文章目录
- TensorBoard可视化
- TensorBoard案例
- 附:系列文章
TensorBoard可视化
import tensorflow as tf# 定义命名空间
with tf.name_scope('input'):# fetch:就是同时运行多个op的意思# 定义名称,会在tensorboard中代替显示input1 = tf.constant(3.0,name='A')input2 = tf.constant(4.0,name='B')input3 = tf.constant(5.0,name='C')
with tf.name_scope('op'):#加法add = tf.add(input2,input3)#乘法mul = tf.multiply(input1,add)
with tf.Session() as ss:#默认在当前py目录下的logs文件夹,没有会自己创建result = ss.run([mul,add])wirter = tf.summary.FileWriter('logs/demo/',ss.graph)print(result)
[27.0, 9.0]
这段代码主要演示了如何使用TensorFlow和TensorBoard创建和可视化计算图。
TensorFlow是一个基于数据流图进行数值计算的开源软件库,具有快速的计算速度和灵活的构建方式,被广泛应用于机器学习、深度学习等领域。而TensorBoard是TensorFlow提供的一个可视化工具,可以帮助开发者更好地理解、调试和优化TensorFlow中的计算图。
在这段代码中,首先通过tf.constant
方法创建了三个常量input1
、input2
和input3
,分别赋值为3.0、4.0和5.0,并给这些常量取了一个别名,分别为“A”、“B”和“C”,这样在后续的TensorBoard中我们就可以清晰地看到它们之间的关系。
接着,使用tf.add
和tf.multiply
方法分别定义了加法和乘法操作,其中加法使用了input2
和input3
,乘法使用了input1
和加法的结果。在这里也定义了两个命名空间input
和op
,分别代表输入和操作的过程。
然后,使用with tf.Session() as ss:
创建一个会话,用ss.run
方法来运行计算图,并将结果保存在result
中。
最后,使用tf.summary.FileWriter
方法将计算图写入到logs/demo/
目录下,以便在TensorBoard中查看。运行python 文件名.py
后,在命令行中输入tensorboard --logdir=logs/demo
启动TensorBoard服务,打开浏览器,输入http://localhost:6006/
即可访问TensorBoard的可视化界面。
在TensorBoard界面中,可以查看到计算图的可视化结构、常量的取值、操作的过程等信息,帮助开发者更好地理解、调试和优化TensorFlow的计算图。
TensorBoard案例
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from __future__ import absolute_import
from __future__ import division
from __future__ import print_functionimport argparse
import sys
import os
import tensorflow as tf
import warnings
warnings.filterwarnings("ignore")from tensorflow.examples.tutorials.mnist import input_data
max_steps = 200 # 最大迭代次数 默认1000
learning_rate = 0.001 # 学习率
dropout = 0.9 # dropout时随机保留神经元的比例data_dir = os.path.join('data', 'mnist')# 样本数据存储的路径
if not os.path.exists('log'):os.mkdir('log')
log_dir = 'log' # 输出日志保存的路径
mnist = input_data.read_data_sets("MNIST_data",one_hot=True)
sess = tf.InteractiveSession()with tf.name_scope('input'):x = tf.placeholder(tf.float32, [None, 784], name='x-input')y_ = tf.placeholder(tf.float32, [None, 10], name='y-input')#使用tf.summary.image保存图像信息,在tensorboard上还原出输入的特征数据对应的图片
with tf.name_scope('input_reshape'):image_shaped_input = tf.reshape(x, [-1, 28, 28, 1])tf.summary.image('input', image_shaped_input, 10)def weight_variable(shape):"""Create a weight variable with appropriate initialization."""initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):"""Create a bias variable with appropriate initialization."""initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def variable_summaries(var):"""Attach a lot of summaries to a Tensor (for TensorBoard visualization)."""with tf.name_scope('summaries'):# 计算参数的均值,并使用tf.summary.scaler记录mean = tf.reduce_mean(var)tf.summary.scalar('mean', mean)# 计算参数的标准差with tf.name_scope('stddev'):stddev = tf.sqrt(tf.reduce_mean(tf.square(var - mean)))# 使用tf.summary.scaler记录记录下标准差,最大值,最小值tf.summary.scalar('stddev', stddev)tf.summary.scalar('max', tf.reduce_max(var))tf.summary.scalar('min', tf.reduce_min(var))# 用直方图记录参数的分布tf.summary.histogram('histogram', var)"""
构建神经网络层
创建第一层隐藏层
创建一个构建隐藏层的方法,输入的参数有:
input_tensor:特征数据
input_dim:输入数据的维度大小
output_dim:输出数据的维度大小(=隐层神经元个数)
layer_name:命名空间
act=tf.nn.relu:激活函数(默认是relu)
"""
def nn_layer(input_tensor, input_dim, output_dim, layer_name, act=tf.nn.relu):"""Reusable code for making a simple neural net layer.It does a matrix multiply, bias add, and then uses relu to nonlinearize.It also sets up name scoping so that the resultant graph is easy to read,and adds a number of summary ops."""# 设置命名空间with tf.name_scope(layer_name):# 调用之前的方法初始化权重w,并且调用参数信息的记录方法,记录w的信息with tf.name_scope('weights'):weights = weight_variable([input_dim, output_dim]) #神经元数量variable_summaries(weights)# 调用之前的方法初始化权重b,并且调用参数信息的记录方法,记录b的信息with tf.name_scope('biases'):biases = bias_variable([output_dim])variable_summaries(biases)# 执行wx+b的线性计算,并且用直方图记录下来with tf.name_scope('linear_compute'):preactivate = tf.matmul(input_tensor, weights) + biasestf.summary.histogram('linear', preactivate)# 将线性输出经过激励函数,并将输出也用直方图记录下来activations = act(preactivate, name='activation')tf.summary.histogram('activations', activations)# 返回激励层的最终输出return activationshidden1 = nn_layer(x, 784, 500, 'layer1')"""
创建一个dropout层,,随机关闭掉hidden1的一些神经元,并记录keep_prob
"""
with tf.name_scope('dropout'):keep_prob = tf.placeholder(tf.float32)tf.summary.scalar('dropout_keep_probability', keep_prob)dropped = tf.nn.dropout(hidden1, keep_prob)
"""
创建一个输出层,输入的维度是上一层的输出:500,输出的维度是分类的类别种类:10,
激活函数设置为全等映射identity.(暂且先别使用softmax,会放在之后的损失函数中一起计算)
"""
y = nn_layer(dropped, 500, 10, 'layer2', act=tf.identity)"""
创建损失函数
使用tf.nn.softmax_cross_entropy_with_logits来计算softmax并计算交叉熵损失,并且求均值作为最终的损失值。
"""with tf.name_scope('loss'):# 计算交叉熵损失(每个样本都会有一个损失)diff = tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y)with tf.name_scope('total'):# 计算所有样本交叉熵损失的均值cross_entropy = tf.reduce_mean(diff)tf.summary.scalar('loss', cross_entropy)"""
训练,并计算准确率
使用AdamOptimizer优化器训练模型,最小化交叉熵损失
计算准确率,并用tf.summary.scalar记录准确率
"""with tf.name_scope('train'):train_step = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
with tf.name_scope('accuracy'):with tf.name_scope('correct_prediction'):# 分别将预测和真实的标签中取出最大值的索引,弱相同则返回1(true),不同则返回0(false)correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))with tf.name_scope('accuracy'):# 求均值即为准确率accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))tf.summary.scalar('accuracy', accuracy)
# summaries合并
merged = tf.summary.merge_all()
# 写到指定的磁盘路径中
#删除src路径下所有文件
def delete_file_folder(src):'''delete files and folders'''if os.path.isfile(src):try:os.remove(src)except:passelif os.path.isdir(src):for item in os.listdir(src):itemsrc=os.path.join(src,item)delete_file_folder(itemsrc) try:os.rmdir(src)except:pass
#删除之前生成的log
if os.path.exists(log_dir + '/train'):delete_file_folder(log_dir + '/train')
if os.path.exists(log_dir + '/test'):delete_file_folder(log_dir + '/test')
train_writer = tf.summary.FileWriter(log_dir + '/train', sess.graph)
test_writer = tf.summary.FileWriter(log_dir + '/test')# 运行初始化所有变量
tf.global_variables_initializer().run()#现在我们要获取之后要喂入的数据
def feed_dict(train):"""Make a TensorFlow feed_dict: maps data onto Tensor placeholders."""if train:xs, ys = mnist.train.next_batch(100)k = dropoutelse:xs, ys = mnist.test.images, mnist.test.labelsk = 1.0return {x: xs, y_: ys, keep_prob: k}"""
开始训练模型。 每隔10步,就进行一次merge, 并打印一次测试数据集的准确率,
然后将测试数据集的各种summary信息写进日志中。 每隔100步,记录原信息
其他每一步时都记录下训练集的summary信息并写到日志中。
"""for i in range(max_steps):if i % 10 == 0: # 记录测试集的summary与accuracysummary, acc = sess.run([merged, accuracy], feed_dict=feed_dict(False))test_writer.add_summary(summary, i)print('Accuracy at step %s: %s' % (i, acc))else: # 记录训练集的summaryif i % 100 == 99: # Record execution statsrun_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)run_metadata = tf.RunMetadata()summary, _ = sess.run([merged, train_step],feed_dict=feed_dict(True),options=run_options,run_metadata=run_metadata)train_writer.add_run_metadata(run_metadata, 'step%03d' % i)train_writer.add_summary(summary, i)print('Adding run metadata for', i)else: # Record a summarysummary, _ = sess.run([merged, train_step], feed_dict=feed_dict(True))train_writer.add_summary(summary, i)train_writer.close()
test_writer.close()
WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:25: read_data_sets (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.Instructions for updating:Please use alternatives such as official/mnist/dataset.py from tensorflow/models.WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:260: maybe_download (from tensorflow.contrib.learn.python.learn.datasets.base) is deprecated and will be removed in a future version.Instructions for updating:Please write your own downloading logic.WARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:262: extract_images (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.Instructions for updating:Please use tf.data to implement this functionality.Extracting MNIST_data/train-images-idx3-ubyte.gzWARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:267: extract_labels (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.Instructions for updating:Please use tf.data to implement this functionality.Extracting MNIST_data/train-labels-idx1-ubyte.gzWARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:110: dense_to_one_hot (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.Instructions for updating:Please use tf.one_hot on tensors.Extracting MNIST_data/t10k-images-idx3-ubyte.gzExtracting MNIST_data/t10k-labels-idx1-ubyte.gzWARNING:tensorflow:From /home/nlp/anaconda3/lib/python3.7/site-packages/tensorflow/contrib/learn/python/learn/datasets/mnist.py:290: DataSet.__init__ (from tensorflow.contrib.learn.python.learn.datasets.mnist) is deprecated and will be removed in a future version.Instructions for updating:Please use alternatives such as official/mnist/dataset.py from tensorflow/models.WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:109: calling dropout (from tensorflow.python.ops.nn_ops) with keep_prob is deprecated and will be removed in a future version.Instructions for updating:Please use `rate` instead of `keep_prob`. Rate should be set to `rate = 1 - keep_prob`.WARNING:tensorflow:From <ipython-input-3-27b4be5f38e0>:123: softmax_cross_entropy_with_logits (from tensorflow.python.ops.nn_ops) is deprecated and will be removed in a future version.Instructions for updating:Future major versions of TensorFlow will allow gradients to flowinto the labels input on backprop by default.See `tf.nn.softmax_cross_entropy_with_logits_v2`.Accuracy at step 0: 0.0639Accuracy at step 10: 0.7139Accuracy at step 20: 0.8271Accuracy at step 30: 0.8647Accuracy at step 40: 0.8818Accuracy at step 50: 0.8932Accuracy at step 60: 0.8984Accuracy at step 70: 0.8986Accuracy at step 80: 0.9062Accuracy at step 90: 0.9128Adding run metadata for 99Accuracy at step 100: 0.9134Accuracy at step 110: 0.9212Accuracy at step 120: 0.9156Accuracy at step 130: 0.9226Accuracy at step 140: 0.9251Accuracy at step 150: 0.9238Accuracy at step 160: 0.9259Accuracy at step 170: 0.9265Accuracy at step 180: 0.9291Accuracy at step 190: 0.932Adding run metadata for 199
这段代码主要演示了如何使用Tensorflow和TensorBoard创建和可视化卷积神经网络(CNN)。
CNN是一种深度学习结构,是神经网络中的一种,可以应用于图像识别、语音识别等领域。在这段代码中,我们将使用CNN完成MNIST手写数字识别任务,输入为28×28像素的手写数字图像,输出为0-9其中一种数字的概率。
首先,通过tf.placeholder
方法创建了两个placeholder变量x和y_,分别表示网络的输入和输出。在输入数据的处理上,为了将输入数据(28×28个像素点)可视化,使用了tf.summary.image
记录了图像信息,用reshape
方法将输入特征数据进行重构,确保输入的图像是28×28×1的大小,并用tf.summary.image
将其记录下来。
其次,在神经网络的构建方面,我们创建了两个隐藏层和一个输出层。其中,每一个隐藏层都包含一个线性计算层和一个ReLU激活函数层,并用tf.summary.histogram
方法记录下每一层的相关参数,以便在TensorBoard中查看各个层的变化。
然后,我们在第一个隐藏层后加入了dropout
层,随机关闭掉一定比例的神经元,以避免过拟合。在输出层中,使用tf.nn.softmax cross_entropy_with_logits
计算交叉熵损失,并用tf.summary.scalar
方法记录损失信息。我们使用tf.train.AdamOptimizer
训练模型,并使用tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
计算准确率,并用tf.summary.scalar
记录准确率信息。
最后,我们定义了merged
变量,将所有需要记录下来的信息汇总在一起,并通过tf.summary.merge_all()
的方法全部合并,最后通过tf.summary.FileWriter
方法将所有的信息写入到日志文件中。在训练过程中,每隔10步就记录下测试集的准确率和相关信息,并记录到日志中;每隔100步记录下训练集的原信息,并记录到日志中;其他步数记录训练集的summary以及写入到日志中。最终,通过train_writer.close()
和test_writer.close()
关闭日志文件。
整个代码中,命名空间的使用规范,各个参数的记录方式清晰明了,使得我们在TensorBoard中能够清晰地了解每一层的参数变化、loss的变化、准确率的变化等。因此,TensorBoard能够很好地帮助开发者进行模型的调试、分析和优化。
附:系列文章
序号 | 文章目录 | 直达链接 |
---|---|---|
1 | 波士顿房价预测 | https://want595.blog.csdn.net/article/details/132181950 |
2 | 鸢尾花数据集分析 | https://want595.blog.csdn.net/article/details/132182057 |
3 | 特征处理 | https://want595.blog.csdn.net/article/details/132182165 |
4 | 交叉验证 | https://want595.blog.csdn.net/article/details/132182238 |
5 | 构造神经网络示例 | https://want595.blog.csdn.net/article/details/132182341 |
6 | 使用TensorFlow完成线性回归 | https://want595.blog.csdn.net/article/details/132182417 |
7 | 使用TensorFlow完成逻辑回归 | https://want595.blog.csdn.net/article/details/132182496 |
8 | TensorBoard案例 | https://want595.blog.csdn.net/article/details/132182584 |
9 | 使用Keras完成线性回归 | https://want595.blog.csdn.net/article/details/132182723 |
10 | 使用Keras完成逻辑回归 | https://want595.blog.csdn.net/article/details/132182795 |
11 | 使用Keras预训练模型完成猫狗识别 | https://want595.blog.csdn.net/article/details/132243928 |
12 | 使用PyTorch训练模型 | https://want595.blog.csdn.net/article/details/132243989 |
13 | 使用Dropout抑制过拟合 | https://want595.blog.csdn.net/article/details/132244111 |
14 | 使用CNN完成MNIST手写体识别(TensorFlow) | https://want595.blog.csdn.net/article/details/132244499 |
15 | 使用CNN完成MNIST手写体识别(Keras) | https://want595.blog.csdn.net/article/details/132244552 |
16 | 使用CNN完成MNIST手写体识别(PyTorch) | https://want595.blog.csdn.net/article/details/132244641 |
17 | 使用GAN生成手写数字样本 | https://want595.blog.csdn.net/article/details/132244764 |
18 | 自然语言处理 | https://want595.blog.csdn.net/article/details/132276591 |