论文学习——基于枢轴点预测和多样性策略混合的动态多目标优化

论文题目:A dynamic multi-objective optimization based on a hybrid of pivot points prediction and diversity strategies

基于枢轴点预测和多样性策略混合的动态多目标优化(Jinhua Zheng a,b,d, Fei Zhou a,b,∗, Juan Zou a,b, Shengxiang Yang a,e, Yaru Hu a,c)Swarm and Evolutionary Computation 78 (2023) 101284

刚开始学习多目标优化算法,不作商业用途,如果有不正确的地方请指正!

个人总结:

挺简单明了又高效的算法

三个部分双重预测+多种群:

预测一:在目标空间根据找到每个目标轴的极值点作为参考点然后找到枢轴线不断扩充点,在环境变化时,根据前时刻的情况对下一个时刻的枢轴点进行预测

预测二:根据种群前两个时刻的中心点进行预测,在监测到环境变化不相似时,中心点的移动长度乘一个随机数L.(好像文章中没有讲到怎么判断环境变化是否相似)

多种群:根据前面时刻的种群确定每个决策变量的最大值最小值在进行随机产生解,相比直接产生随机解增加了一点点收敛性(如果ps值的的变化趋势时变大的情况这个策略可靠吗?).

随机选取了种群中5 %的个体作为检测器来检测环境变化。如果目标值之间存在不匹配,则将其视为环境改变了

Ppiv(枢轴点)和Prand(多种群产生的解的数量)的大小分别设置为0.3 N和0.7 N。

引言

目前存在的问题

基于多样性方法的劣势:        

        在处理复杂的环境变化时,这些策略并不能提供良好的性能,尤其是不规则变化的PF或PS

基于内存方法的劣势:

        对于非周期性问题,基于内存的策略可能会显示出较差的结果。

基于预测方法的劣势:

        在基于预测的策略中设置不合适的预测方法或者模型会影响总体的收敛和分布,此外在处理快速变化的环境,其性能可能会随着优化的进行而迅速下降。

基于多种群方法:

        前些日子复现的PBDMO就是多种群方法

本文提出的想法

提出了一种基于双重预测多样性策略混合的动态多目标优化策略.

  • 通过动态选择机制选择的一些个体(枢轴点)用于模拟PF或PS。然后,自回归模型预测环境变化后的枢轴点,以达到跟踪变化的PF或PS的目的
  • 将环境变化分为相似和不同的变化。当变化相似时,非支配个体结合非支配个体集合中心点的运动趋势,预测环境变化后的非支配个体。否则,在利用非支配个体集合中心点的运动趋势对非支配个体进行预测的同时,对预测结果进行前后推导,推导新的最优解。
  • 在相对准确的可行区域内随机生成搜索个体,在一定程度上提升了随机搜索个体的质量,可以保持种群的多样性

背景及相关工作

这里介绍了基础和DMOEA框架,在静态时使用RM-MEDA算法进行优化

提出框架与实施

提出了一种新的基于枢轴点预测的预测策略。在该预测策略中,如果检测到一个环境变化,那么对其做出响应的种群将由三个子种群组成。

A.Pivot point and predicting the pivot point set(枢轴点和预测合集)

首先初始化一个大小为N的种群,并建立一个存储池Q用于存储历史信息.然后在目标空间中通过动态选择机制迭代地选择枢轴点,并将枢轴点放入存储池Q中。下图展示了在一开始的三个时刻选择枢轴点的过程:

  • (找到极值点)设第j个坐标轴上的极值点为xj,令xj为以Y = ( Y1 , Y2 , ... , Yn)T为坐标轴方向,最小化聚集函数g ( x | Y )的解。这里,n表示决策空间的维数。极值点的数学表达式如式( 3 )所示:式中:x∈Ω;Y为坐标轴的权向量;J为第j维坐标轴。为了搜索第j个轴上的极值点,需要固定第j个维度上的方向,则第j个维度方向上的权重向量为wj = 1,其他方向上的权重向量为wn = 10e-6 。如图2所示,x1和x2是(标记为绿色的点)的极值点,x1和x2被放入Q中.此时,Q中有两个个体x1和x2 .

  • (建立枢纽)建立枢轴的前提是找到种群中与存储池Q中所有个体距离之和最大的个体,并以原点建立枢轴,用公式表达种群中个体xd与存储池Q中所有个体的距离之和.如图2所示,在第一次选择枢轴点的过程中,x3是种群中距离存储池Q中个体最远的个体。将x3与原点连接起来,形成一条称为支点的参考线。 

  • (找到枢轴点)计算目标空间中的个体与枢轴L的距离,为保证所选枢轴个体的收敛性,距离枢轴最近的个体即为本次选择过程中的枢轴点。设个体P的坐标为( xk , yk)。个体P到支点L的距离的数学表达式如式( 6 )所示:
  • 重复上述过程直到找到足够多的支点.

自回归预测模型对环境变化后的枢轴点进行预测,将枢轴点作为代表个体对PF或PS进行有效跟踪。支点的选取过程如算法1所示:

B.Predicting the non-dominant individual set(预测非支配个体集合)

环境变化时相似时

所有非支配点都会利用集合中心点的演化趋势进行演化。此时,t + 1时刻预测非支配个体的数学表达式如式( 7 )所示: 

Dcnonk t表示非支配个体集合中心点在时间步t的移动趋势

环境变化不相似时

利用非支配个体的当前位置和非支配个体集合中心点的移动趋势来预测非支配个体的下一个时间步。同时,推导出预测的非支配个体。推导操作是基于预测结果进行的;预测结果随机向前和向后移动λ次Dcnonk t。推导预测结果的操作如图3所示。针对这种不相似变化的预测策略的数学表达式如下:

 

伪代码如下:

 C.Generation mechanism of random search solutions to maintain population diversity(维持种群多样性的随机搜索生成机制)

假设随机搜索个体在决策空间中随机产生。在这种情况下,一些随机搜索个体可能会远离真实的PF,这种随机搜索个体的性能可能会影响种群的收敛性。如果能够明确随机搜索个体的生成区域,则可以在一定程度上降低该问题发生的概率。在前期工作的基础上,我们决定在通过预测得到的前两个子种群中选择最大值和最小值点来确定随机搜索个体的生成区域并运行.

在前两个子种群中,最大点( max )和最小点( min )分别是指决策空间中所有维度目标值最大和最小的个体

个体由随机生成 

伪代码如图所示

D.算法整体

伪代码

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/741360.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

java集合框架——Collection集合概述

前言 之前学过ArrayList,现在接触到更多集合了。整理下笔记,打好基础,daydayup! 集合体系结构 集合分为单列结合和双列结合,Collection代表单列集合,每个元素只包含一个值。Map代表双列集合,每个元素包含两…

HCIP —— BGP 的社团属性

目录 BGP 的社团属性 1.0X00000000 --- internet 2.0XFFFFFF02 --- no - advertise 3.0XFFFFFF01 --- no - export 4.0XFFFFFF03 --- no-export-subconfed 配置: 第一步:使用路由策略执行对流量打上社团属性 第二步:在对等体通告路由之…

智慧城市与绿色出行:共同迈向低碳未来

随着城市化进程的加速,交通拥堵、空气污染、能源消耗等问题日益凸显,智慧城市与绿色出行成为了解决这些问题的关键途径。智慧城市利用信息技术手段,实现城市各领域的智能化管理和服务,而绿色出行则强调低碳、环保的出行方式&#…

1.Python是什么?——《跟老吕学Python编程》

1.Python是什么?——《跟老吕学Python编程》 Python是一种什么样的语言?Python的优点Python的缺点 Python发展历史Python的起源Python版本发展史 Python的价值学Python可以做什么职业?Python可以做什么应用? Python是一种什么样的…

第十五届蓝桥杯(Web 应用开发)模拟赛 3 期-大学组(被题目描述坑惨了)

目录 1.创意广告牌 2.原子化css 3.神秘咒语 4.朋友圈 5.美食蛋白揭秘 6.营业状态变更 7.小说阅读器 8.冰岛人 9.这是一个”浏览器“ 10.趣味加密解密 总结 1.创意广告牌 这个题目不多说了,只要知道这些css应该都能写出来,不会的平时多查查文…

C++第三弹---C++入门(下)

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】 C入门 1、内联函数 1.1、概念 1.2、特性 2、auto关键字(C11) 2.1、类型别名思考 2.2、auto简介 2.3、auto的使用细则 2.3、auto不能推导的场景 …

探索Linux世界:基本指令(文件查看、时间相关、grep、打包压缩及相关知识)

今天继续介绍一些指令 文章目录 1.cat - 查看文件1.1输出重定向和追加重定向1.2指令echo 2.more 指令3.less - 逐页查看文本文件内容4.head- 显示文件开头部分内容5.tail - 显示文件末尾部分内容5.1输入重定向&#xff08;<&#xff09;5.2管道&#xff08;|&#xff09; 6.…

镭速教你如何解决大数据量串行处理的问题

大数据的高效处理成为企业发展的关键。然而&#xff0c;大数据量串行处理的问题常常困扰着许多企业&#xff0c;尤其是在数据传输方面。本文将探讨大数据量串行处理的常见问题&#xff0c;并介绍企业常用的处理方式&#xff0c;最后重点阐述镭速如何提供创新解决方案&#xff0…

吴恩达机器学习-未分级实验:过拟合(Overfitting)

解决过拟合 选择更多的数据选择特征&#xff08;特征选择&#xff09;减小参数大小&#xff08;归一化&#xff09; 目标 在本实验中&#xff0c;您将探索: 可能发生过拟合的情况一些解决方案 %matplotlib widget import matplotlib.pyplot as plt from ipywidgets import …

無塵棉花棒:光電設備與光纖清潔的理想之選

在光電設備和光纖清潔用品的领域中&#xff0c;無塵棉花棒以其卓越的性能和特性&#xff0c;已然成為清潔設備端光纖插座的最佳選擇。它不仅具有出色的清潔效果&#xff0c;而且在使用過程中無棉絮、無矽&#xff0c;確保了清潔過程的高效和安全。 首先&#xff0c;無塵棉花棒…

百度AI智能审核

一、介绍 百度内容审核平台&#xff08;Baidu Content Audit Platform&#xff09;是百度推出的一款用于进行内容审核的平台。该平台利用人工智能技术&#xff0c;对用户上传的各类内容进行审核和过滤&#xff0c;以实现内容的合规和安全&#xff0c;可以识别和过滤涉黄、涉政…

微信小程序云开发教程——墨刀原型工具入门(常用组件)

引言 作为一个小白&#xff0c;小北要怎么在短时间内快速学会微信小程序原型设计&#xff1f; “时间紧&#xff0c;任务重”&#xff0c;这意味着学习时必须把握微信小程序原型设计中的重点、难点&#xff0c;而非面面俱到。 要在短时间内理解、掌握一个工具的使用&#xf…

三款内衣洗衣机的性能较量:希亦、觉飞、鲸立谁的性能更胜一筹?

现在大多数的上班族&#xff0c;面临的都是早九晚六的工作&#xff0c;而且工作完下班回家还是面对各种各样的家务&#xff0c;特别是清洗需要换洗的洗衣&#xff0c;属实是有点辛苦了。可能很多人为了方便&#xff0c;每次洗衣服的都是把一堆衣服直接丢进洗衣机&#xff0c;直…

新手必看,不容错过的厨房装修设计趋势。福州中宅装饰,福州装修

厨房&#xff0c;这个家中最具烟火气息的地方&#xff0c;装修设计的重要性不言而喻。今天我们就来聊聊厨房装修设计的那些事儿&#xff0c;从传统到新趋势&#xff0c;让我们一起看看有哪些值得注意的地方。 传统篇 1. 地轨推拉门 在传统厨房装修中&#xff0c;地轨推拉门是…

【四】将vue部署到k8s中

准备dockerfile和jenkinsfile还有yml文件 因为我前三步将其他的都弄好了&#xff0c;我现在的目的只是为了简单部署上去&#xff0c;所以没做其他深入研究配置&#xff0c;我的简单代码&#xff1a;https://gitee.com/feiminjie/helloworldfront我准备的dockerfile # 使用官方…

Yakit爆破模块应用

yakit介绍 一款集成了各种渗透测试功能的集成软件。&#xff08;类似于burp&#xff0c;但我感觉他功能挺强大&#xff09; 爆破模块位置 按照下面图标点击 界面就是如下。 左侧可以选择爆破的类型&#xff0c;各种数据库http&#xff0c;ssh等都支持。 爆破参数 可以选择…

贪心算法(算法竞赛、蓝桥杯)--奶牛晒衣服

1、B站视频链接&#xff1a;A28 贪心算法 P1843 奶牛晒衣服_哔哩哔哩_bilibili 题目链接&#xff1a;奶牛晒衣服 - 洛谷 #include <bits/stdc.h> using namespace std; priority_queue<int> q;//用大根堆维护湿度的最大值 int n,a,b; int tim,maxn;int main(){s…

第2篇【Docker项目实战】使用Docker部署Raneto知识库平台(转载)

【Docker项目实战】使用Docker部署Raneto知识库平台 一、Raneto介绍 1.1 Raneto简介 Raneto是一个免费、开放、简单的 Markdown 支持的 Node.js 知识库。 1.2 知识库介绍 知识库 知识库是指存储和组织知识的系统或库&#xff0c;它包括了各种类型的信息和知识&#xff0c;如…

数据分析实战-Python实现博客评论数据的情感分析

数据分析实战-Python实现博客评论数据的情感分析 学习建议SnowNLP基础什么是SnowNLP&#xff1f;SnowNLP情感分析 SnowNLP使用SnowNLP安装情感分析中文分词关键词提取拼音、词性标准 SnowNLP实战-博客评论数据的情感分析数据准备数据获取数据分析 总结 学习建议 现在很多网站、…

技术面试最重要的是什么?

技术面试最重要的是什么&#xff1f; 最重要的当然是实力&#xff0c;然而实力之外&#xff0c;也有一些基本原则。 1 让面试官听懂你在做什么 牛逼的人都是能把最复杂的事情讲简单的。 如果面试官听不懂你讲的东西&#xff0c;他就无法判断你的水平。如果这个面试官不是你…