matlab 基操~

MATLAB基本操作

1. 对象定义 使用sym定义单个对象、使用syms定义多个对象

2. 使用limit求极限

$$ \lim_{v \rightarrow a} f(x) $$

    limit(f,v,a) % 使用limit(f,v,a,'left')可求左极限

3. 导数 使用diff(f,v,n)对$ f(v)=v^{t-1} $求 $ n $ 阶导 $ \frac{d^nf}{d^nv} $,n缺省时,默认为1,diff(f)默认求一阶导数。

4. 定积分和不定积分 使用int(f,v)求f对变量v的不定积分,使用int(f,v,a,b)求f对变量v的定积分,a、b为积分上下标。$ \int{f(v)dv} $、$ \int^{a}_{b}{f(v)dv} $。

5. matlab函数文件定义形式

function [输出形参列表] = 函数名(输入形参列表)函数体
function spir_len = spirallength(d, n, lcolor)
% SPIRALLENGTH plot a circle of radius as r in the provided color and calculate its area
% 输入参数:
%   d: 螺旋的旋距
%   n: 螺旋的圈数
%   lcolor:画图线的颜色
% 输出参数:
%   spir_len:螺旋的周长
% 调用说明:
%   spirallength(d,n):以参数d,n画螺旋线,螺旋线默认为蓝色
%   spirallength(d,n,lcolor):以参数d,n,lcolor画螺旋线
%   spir_len = spirallength(d,n):计算螺旋线的周长,并以蓝色填充螺旋线
%   spir_len = spirallength(d,n,lcolor):计算螺旋线的周长,并以lcolor颜色填充螺旋线% 版本号V1.0,编写于1999年9月9号,修改于1999年9月10号,作者:亚索if nargin > 3error('输入变量过多!');
elseif nargin == 2lcolor = 'b'; % 默认情况下为蓝色
endj = sqrt(-1);
phi = 0 : pi/1000 : n*2*pi;
amp = 0 : d/2000 : n*d;
spir = amp .* exp(j*phi);if nargout == 1spir_len = sum(abs(diff(spir)));fill(real(spir), imag(spir), lcolor);
elseif nargout == 0plot(spir, lcolor);
elseerror('输出变量过多!');
endaxis('square');

6. matlab程序设计语句

% for循环
for 循环变量=初值:步长:终值循环体
end% while循环
while 条件循环体
end% if语句
if 条件语句组1
elseif语句组2
else语句组3
end% switch语句
switch 表达式case  表达式1语句组1case  表达式2语句组2... ...case   表达式m语句组motherwise语句组
end% try语句
try语句组1                %语句组1若正确则跳出该结构
catch语句组2
end

7. 矩阵操作

操作作用
size(A)求矩阵A的行数和列数
length(x)返回向量x的长度
A'A的转置
A(:,n)取矩阵A第n列数,A(n,:)取第n行
det(A)求矩阵A的行列式
inv(A)求A的逆
rank(A)求A的秩
trace(A)求A的迹
max(A)、min(A)求A的各列最大、最小元素
mean(A)求A各列的平均值
sum(A)求A各列元素之和

8. matlab简单绘图

 plot函数是MATLAB中最核心的二维绘图函数,有诸多语法格式,可实现多种功能。常用格式有:

  • plot(x):缺省自变量的绘图格式,x可为向量或矩阵。
  • plot(x, y):基本格式,x和y可为向量或矩阵。
  • plot(x1, y1, x2, y2,…):多条曲线绘图格式,在同一坐标系中绘制多个图形。
  • plot(x, y,‘s’):开关格式,开关量字符串s设定了图形曲线的颜色、线型及标示符号(见下表)。

VbQVgI.png

无约束优化问题求解

fminbnd、fminunc函数输出变量解释

变量描述
x由优化函数求得的值. 若exitflag>0,则x为解; 否则,x不是最终解, 它只是迭代制止时优化过程的值
fval解 x 处的目标函数值
exitflag描述退出条件:exitflag>0,表目标函数收敛于解x处;exitflag=0,表已达到函数评价或迭代的最大次数;exitflag<0,表目标函数不收敛
output包含优化结果信息的输出结构。Iterations:迭代次数;Algorithm:所采用的算法;FuncCount:函数评价次数

一元函数无约束优化问题-fminbnd

常用格式

$$ min f(x), x_1<x<x_2 $$

(1)x= fminbnd (fun, x1, x2) (2)x= fminbnd (fun, x1, x2 , options) (3)[x , fval]= fminbnd(...) (4)[x , fval , exitflag]= fminbnd(...) (5)[x , fval , exitflag , output]= fminbnd(...) 函数fminbnd的算法基于黄金分割法和二次插值法,它要求目标函数必须是连续函数,并可能只给出局部最优解

例子

求函数 $ f(x)=2e^{-x}sin(x) $ 在 $ 0<x<8 $ 时的最小值

% 如果求最大需要对f取反
f = @(x) (2*exp(-x)*sin(x));
[x,fval] = fminbnd(f,0,8);
x
fval

多元函数无约束优化问题-fminunc

常用格式

$$ min f(X),这里X为n维变量 $$ fminunc常用格式为: (1)x= fminunc(fun, X0); (2)x= fminunc(fun, X0,options); (3)[x,fval]= fminunc(...); (4)[x,fval,exitflag]= fminunc(...); (5)[x,fval,exitflag,output]= fminunc(...) 其中 X0为初始值

例子

求函数$ f(x_1,x_2)=(4x_1^2+2x_2^2+4x_1x_2+2x_2^2+1)e^x $的最小值,$ X_0=[-1,1] $

f = @(x) (4*x(1)^2+2*x(2)^2+4*x(1)*x(2)+2*x(2)+1)*exp(x(1));
x0 = [-1,1];
[x,fval] = fminunc(f, x0);
x
fval

线性规划问题求解

使用linprog求解一般线性规划问题

常见问题(linprog默认求最小值) $$ minz=cX $$

$$ s.t. \begin{cases} AX\leq{b}\ Aeq\cdot{X}=beq\ VLB\leq{X}\leq{VUB} \end{cases}$$

求解命令

[x,fval] = linprog(c,A,b,Aeq,beq,VLB,VUB)

例子

$$ min z=13x_1+9x_2+10x_3+11x_4+12x_5+8x_6 $$

$$ s.t.\left{ \begin{aligned} & x_1+x_2=400\ & x_2+x_5=600\ & x_3+x_6=500\ & 0.4x_1+1.1x_2+x_3\leq{800}\ & 0.5x_4+1.2x_5+1.3x_6\leq{900}\ & x_i\geq0,i=1,2,...,6 \end{aligned} \right. $$

f = [13 9 10 11 12 8];
A =  [0.4 1.1 1 0 0 00 0 0 0.5 1.2 1.3];
b = [800; 900];
Aeq=[1 0 0 1 0 00 1 0 0 1 00 0 1 0 0 1];
beq=[400 600 500];
vlb = zeros(6,1);
vub=[];
[x,fval] = linprog(f,A,b,Aeq,beq,vlb,vub)

使用bintprog求解0-1规划问题

matlab2014以上版本使用intlinprog求解0-1规划问题

$$ minz=cX $$

$$ s.t. \begin{cases} AX\leq{b}\ Aeq\cdot{X}=beq\ X为0-1变量 \end{cases}$$

% 命令
[x,fval] = bintprog(c,A,b,Aeq,beq)

例子

$$ min z=3x_1+7x_2-x_3+x_4 $$ $$ s.t. \begin{cases} 2x_1-x_2+x_3-x_4\geq{1}\ x_1-x_2+6x_3+4x_4\geq{8}\ 5x_1+3x_2+x_4\geq{5}\ x_i=0或1(i=1,2,3,4) \end{cases} $$

z = [3;7;-1;1];
A = [-2 1 -1 1;-1 1 -6 -4;-5 -3 0 -1];
b = [-1;-8;-5];
Aeq = [];
beq = [];[x,fval] = bintprog(z,A,b,Aeq,beq)

数据插值与拟合

数据插值,使用interpl进行一维插值

matlab命令

yi = interpl(X,Y,xi,method)

该命令用指定的算法找出一个一元函数,然后以该函数给出xi处的值。其中x=[x1,x2,…,xn]’和 y=[y1,y2,…,yn]’两个向量分别为给定的一组自变量和函数值,用来表示已知样本点数据;xi为待求插值点处横坐标,可以是一个标量,也可以是一个向量,是向量时,必须单调;yi得到返回的对应纵坐标。

  • method可以选取以下方法之一:
    • ‘nearest’:最近邻点插值,直接完成计算;
    • ‘spline’:三次样条函数插值;
    • ‘linear’:线性插值(缺省方式),直接完成计算;
    • ‘cubic’:三次函数插值;

例子

作函数$ y=(x^2-3x+7)e^{-4x}sin(2x) $在[0,1]取间隔为0.1的点图,用插值进行实验

x=0:0.1:1;
y=(x.^2-3*x+7).*exp(-4*x).*sin(2*x);  %产生原始数据subplot(1,2,1);
plot(x,y,x,y,'ro')    %作图
xx=0:0.02:1;  %待求插值点
yy=interp1(x,y,xx,'spline');   %此处可用nearest,cubic,spline分别试验subplot(1,2,2)
plot(x,y,'ro',xx,yy,'b')    %作图

曲线拟合

拟合函数polyfit

p=polyfit(x,y,n)
[p,s]= polyfit(x,y,n)

说明:x,y为数据点,n为多项式阶数,返回p为幂次从高到低的多项式系数向量p。p是n+1维参数向量p(1),p(2)….那么拟合后对应的多项式即为: $$ p(1)x^n+p(2)x^{n-1}+\cdot\cdot\cdot+p(n)x+p(n+1) $$

x必须是单调的。矩阵s用于生成预测值的误差估计

多项式求值函数polyval

y=polyval(p,x)
[y,DELTA]=polyval(p,x,s)

说明:y=polyval(p,x)为返回对应自变量x在给定系数p的多项式的值; [y,DELTA]=polyval(p,x,s) 使用polyfit函数的选项输出s得出误差估计DELTA。它假设polyfit函数数据输入的误差是独立正态的,并且方差为常数。则DELTA将至少包含50%的预测值。

例子

求如下给定数据的拟合曲线 x=[0.5,1.0,1.5,2.0,2.5,3.0],y=[1.75,2.45,3.81,4.80,7.00,8.60]

x=[0.5,1.0,1.5,2.0,2.5,3.0];
y=[1.75,2.45,3.81,4.80,7.00,8.60];
plot(x,y,‘*r’)  %先观察数据点的大致形态
p=polyfit(x,y,2)  %用二次多项式拟合
x1=0.5:0.05:3.0; % 步长0.05
y1=polyval(p,x1);
plot(x,y,'*r',x1,y1,'-b')

本文由博客群发一文多发等运营工具平台 OpenWrite 发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/736491.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

智谱清华LongAlign发布:重塑NLP长文本处理

引言 随着大型语言模型&#xff08;LLMs&#xff09;的不断进化&#xff0c;我们现在能够处理的文本长度已经达到了前所未有的规模——从最初的几百个tokens到现在的128k tokens&#xff0c;相当于一本300页的书。这一进步为语义信息的提供、错误率的减少以及用户体验的提升打…

MySQL三种日志

一、undo log&#xff08;回滚日志&#xff09; 1.作用&#xff1a; &#xff08;1&#xff09;保证了事物的原子性 &#xff08;2&#xff09;通过read view和undo log实现mvcc多版本并发控制 2.在事务提交前&#xff0c;记录更新前的数据到undo log里&#xff0c;回滚的时候读…

Clickhouse: 随笔杂记

Clickhouse 文件缓存的使用 元数据缓存 1、Clickhouse启动的时候会加载所有表的元数据信息&#xff0c;这部分会缓存在内存里面。这部分的内存没有办法知道并且也不走MemoryTracker。 Mark数据缓存 2、Clickhouse会缓存表的mark信息在内存里, 使用LRU算法来控制。缓存大小通过…

java学习之路-数据类型与变量

目录 数据类型与变量 1. 字面常量 2. 数据类型 3. 变量 3.1 变量概念 3.2 整型变量 3.2.1 整型变量 3.2.2 长整型变量 3.2.3 短整型变量 3.2.4 字节型变量 3.3 浮点型变量 3.3.1 双精度浮点型 3.3.2 单精度浮点型 3.4 字符型变量 3.5布尔型变量 3.6 类型转换 …

苍穹外卖学习-----2024/03/010---修改套餐,套餐状态修改开发

修改套餐 4.1 需求分析和设计 产品原型&#xff1a; 接口设计&#xff08;共涉及到5个接口&#xff09;&#xff1a; 根据id查询套餐根据类型查询分类&#xff08;已完成&#xff09;根据分类id查询菜品&#xff08;已完成&#xff09;图片上传&#xff08;已完成&#xf…

Linux 地址空间

目录 一、程序地址空间 1、虚拟地址 Makefile新写法 2、进程地址空间分布 3、栈&堆 4、static修饰局部变量 5、字符串常量不可修改 6、虚拟地址与物理地址的联系 二、CPU读取程序全过程 1、形成可执行程序 2、生成虚拟地址 3、程序的启动 4、创建进程 5、地…

Python 学习——Python requests 库文档

目录 快速上手一、 发送请求二、 传递 URL 参数三、 响应内容3.1 文本相应内容3.2 二进制响应内容3.3 JSON 响应内容3.4 原始响应内容 四、 定制请求头五、 更加复杂的 POST 请求5.1 字典方式5.2 元组方式5.3 传递一个string5.4 JSON格式5.5 上传文件5.6 发送字符串为文件 六、…

OrangePiLinux连接小米手机使用adb显示“List of devices attached”的问题解决

参考文章adb连接不上手机&#xff0c;提示“List of devices attached” - 简书 (jianshu.com) adb解决报错error: no devices/emulators found error: cannot connect to daemon_adb.exe: no devices/emulators found-CSDN博客 error: no devices/emulators found解决办法-C…

Java三代日期类

文章目录 日期类第一代日期类第二代日期类第三代日期类LocalDateTime方法LocalDateTime格式化日期与时间戳的转换Date转换为时间戳时间戳转换为Date 日期类 在Java中&#xff0c;有三代日期类&#xff1a;java.util.Date、java.util.Calendar和java.time包下的日期类。这三代日…

【Redis】RedisTemplate序列化传输数据

使用自定义的序列化器 使用RedisTemplate默认的序列化器发送数据&#xff0c;会将key全都当成Object处理&#xff0c;从而按照对象的方式转成json格式发送到服务器&#xff0c;这样会导致两个问题。一是不方便阅读&#xff0c;二是会大大浪费内存。因此&#xff0c;建议自定义…

Linux之线程控制

目录 一、POSIX线程库 二、线程的创建 三、线程等待 四、线程终止 五、分离线程 六、线程ID&#xff1a;pthread_t 1、获取线程ID 2、pthread_t 七、线程局部存储&#xff1a;__thread 一、POSIX线程库 由于Linux下的线程并没有独立特有的结构&#xff0c;所以Linux并…

Qt设置右键菜单无效customContextMenuRequested(const QPoint pos)

问题代码&#xff1a; void MainWindow::onCustomContextMenuRequested(const QPoint &pos) {QTreeWidgetItem *item ui->treeWidget->itemAt(pos);if (item){QMenu menu(ui->treeWidget);TreeNodeType nodeType (TreeNodeType)item->data(0, Qt::UserRole …

LightDB24.1 oracle_fdw支持服务端GBK编码

功能介绍 oracle_fdw是一个PG的插件&#xff0c;用于连接oracle数据库&#xff0c;由于原生PG不支持服务端GBK编码&#xff0c;所以原生的oracle_fdw也不支持服务端GBK编码。在LightDB23.3中支持了服务端GBK编码&#xff0c;导致在GBK编码的数据库中使用oracle_fdw时报错。 Li…

python82-Python的函数高级内容之使用函数变量

Python的函数是“一等公民”&#xff0c;因此函数本身也是一个对象&#xff0c;函数既可用于赋值&#xff0c;也可用作其他函数的参数&#xff0c;还可作为其他函数的返回值。 使用函数变量 Python的函数也是一种值:所有函数都是function对象&#xff0c;这意味着可以把函数本…

es6的新特性

ECMAScript 6&#xff08;也称为 ES6 或 ECMAScript 2015&#xff09;是 JavaScript 的一个重要更新版本&#xff0c;引入了许多新的语法和功能&#xff0c;以提高开发效率和代码可读性。以下是 ES6 中一些比较常见和重要的新特性&#xff1a; let 和 const 声明&#xff1a; l…

一篇搞定mysql数据库基础

目录 一、MySQL具体的特点 1.关系型数据库&#xff08;RDBMS&#xff09;&#xff1a; 2.MySQL是一个“客户端-服务器”结构的程序 Q1:服务器能不能知道客户端什么时候发请求&#xff1f;&#xff1f; Q2:服务器是只给一个客户端提供服务吗&#xff1f;&#xff1f; 二、M…

LeetCode 80.删除有序数组中的重复项 II

目录标题 删除有序数组中的重复项 II题目解题思路实现代码代码讲解总结删除有序数组中的重复项 II 题目 解题思路 慢指针指向满足条件的数字的末尾,快指针遍历原数组。 并且用一个变量记录当前末尾数字出现了几次,防止超过两次。最后返回维护慢指针的结果+1即可。 实现代…

聊聊pytho中的函数

Python中的函数 一、Python中函数的作用与使用步骤 1、为什么需要函数 在Python实际开发中&#xff0c;我们使用函数的目的只有一个“让我们的代码可以被重复使用” 函数的作用有两个&#xff1a; ① 代码重用&#xff08;代码重复使用&#xff09; ② 模块化编程&#x…

ChatGPT用不了,发了没反应,终于解决了!

大概在几天前的早上&#xff0c;ChatGPT突然就用不了。 这完全打乱了我的工作节奏&#xff01;&#xff01;&#xff01;&#xff08;所以&#xff0c;我就去玩了&#xff09; 用不了的具体表现是&#xff0c;你输入内容之后&#xff0c;内容消失&#xff0c;按钮变灰&#xff…

flask流式响应

Flask提供了Response对象来处理HTTP响应。可以通过在视图函数中返回一个Response对象&#xff0c;然后使用Response对象的iter方法来实现将数据流式传输到客户端。 1.1 循环生成迭代数据块 from flask import Flask, Response, stream_with_context, requestapp Flask(__nam…