基于深度学习网络的火灾检测算法matlab仿真

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

matlab2022a

3.部分核心程序

................................................................................
load FRCNN.mat
In_layer_Size  = [224 224 3];
imgPath = 'train/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:length(imgDir)          % 遍历结构体就可以一一处理图片了iif mod(i,9)==1figureendcnt     = cnt+1;subplot(3,3,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片I               = imresize(img,In_layer_Size(1:2));[bboxes,scores] = detect(detector,I);[Vs,Is] = max(scores);if isempty(bboxes)==0I1              = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs);elseI1              = I;Vs              = 0;endimshow(I1)title(['检测置信度:',num2str(Vs)]);if cnt==9cnt=0;end
end
In_layer_Size  = [224 224 3];
imgPath = 'test/';        % 图像库路径
imgDir  = dir([imgPath '*.jpg']); % 遍历所有jpg格式文件
cnt     = 0;
for i = 1:length(imgDir)          % 遍历结构体就可以一一处理图片了iif mod(i,5)==1figureendcnt     = cnt+1;subplot(1,5,cnt); img = imread([imgPath imgDir(i).name]); %读取每张图片I               = imresize(img,In_layer_Size(1:2));[bboxes,scores] = detect(detector,I);[Vs,Is] = max(scores);if isempty(bboxes)==0I1              = insertObjectAnnotation(I,'rectangle',bboxes(Is,:),Vs);elseI1              = I;Vs              = 0;endimshow(I1)title(['检测置信度:',num2str(Vs)]);if cnt==5cnt=0;end
end
0057

4.算法理论概述

        火灾检测在许多领域都是一项重要的任务,包括建筑、森林、甚至是太空。近年来,深度学习网络在图像识别和分类上的应用取得了显著的进步,这使得基于深度学习的火灾检测算法变得越来越普遍。下面,我们将详细介绍一种基于卷积神经网络(CNN)的火灾检测算法。卷积神经网络(CNN)是一种深度学习网络,特别适合处理图像数据。CNN通过一系列的卷积层、池化层和全连接层来提取和识别图像的特征。在火灾检测中,CNN能够从图像中学习并识别出火灾的特征,从而进行准确的火灾检测。

具体来说,CNN的火灾检测算法通常包含以下步骤:

  1. 数据预处理:将图像数据进行预处理,如尺寸调整、归一化等,以便于神经网络处理。
  2. 特征提取:通过CNN的前几层(通常是卷积层和池化层)从图像中提取出低级到高级的特征。
  3. 火灾识别:通过CNN的后几层(通常是全连接层和输出层)根据提取的特征进行火灾的识别。

CNN的数学公式主要涉及卷积、池化和激活函数等部分。

  • 卷积:Xi​=f(Wi​∗X+bi​),其中Xi​是卷积后的结果,Wi​是卷积核,X是输入图像,bi​是偏置,f是激活函数。
  • 池化:一般采用最大池化或平均池化,将输入图像的一部分区域映射为一个单一的值。
  • 激活函数:如ReLU(Rectified Linear Unit)等,用于引入非线性,增强神经网络的表达能力。

算法流程

  1. 数据准备:收集大量的火灾和非火灾图像数据,对图像进行标注,并将数据分为训练集、验证集和测试集。
  2. 模型构建:构建CNN模型,包括多个卷积层、池化层、全连接层等。
  3. 模型训练:使用训练集对模型进行训练,通过反向传播算法调整模型的参数,以最小化预测错误。
  4. 模型验证:使用验证集对训练好的模型进行验证,调整模型的参数,以获得更好的性能。
  5. 模型测试:使用测试集对模型的性能进行评估,计算模型的准确率、召回率、F1分数等指标。
  6. 模型应用:将训练好的模型应用于实际的火灾检测任务,可以将其集成到监控系统中,或者用于分析卫星或无人机拍摄的图像等。

优缺点

基于深度学习的火灾检测算法具有以下优点:

  • 能够自动学习和识别火灾特征,大大提高了火灾检测的准确性和效率。
  • 可以处理复杂的场景和环境,如夜间、浓烟、遮挡等情况。
  • 可以处理多角度、多视角的图像数据。

但同时也存在一些缺点:

  • 需要大量的标注数据来进行训练和验证。
  • 对硬件设备的要求较高,需要高性能的GPU或TPU进行计算。
  • 在一些特殊场景(如极寒、极热等)下的性能可能会受到影响。

        总的来说,基于深度学习的火灾检测算法已经在多个领域得到了广泛的应用,并且表现出了优秀的性能。随着深度学习技术的不断发展,相信这种算法在未来会得到进一步的优化和提升。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/73645.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue: 使用下拉树组件@riophae/vue-treeselect

前言: 在vue中, 因为element-ui 2.X是没有tree-select组件的,到了element-plus就有了 riophae/vue-treeselect是一个基于 Vue.js 的树形选择器组件,可以用于选择树形结构的数据。它支持多选、搜索、异步加载等功能,可以自定义选项的样式和模…

如何制作一个百货小程序

在这个数字化时代,小程序已成为各行各业的必备工具。其中,百货小程序因其便捷性和多功能性,越来越受到人们的青睐。那么,如何制作一个百货小程序呢?下面,我们就详细介绍一下无需编写代码的步骤。 一、进入后…

【C++基础】7. 控制语句

文章目录 【 1. 循环 】1.1 循环类型1.2 循环控制语句break 语句continue 语句goto 语句 1.3 无限循环 【 2. 选择 】switch 语句?:语句 【 1. 循环 】 1.1 循环类型 循环类型描述while 循环当给定条件为真时,重复语句或语句组。它会在执行…

【django开发手册】详解drf filter中DjangoFilterBackend,SearchFilter,OrderingFilter使用方式

💖 作者简介:大家好,我是Zeeland,开源建设者与全栈领域优质创作者。📝 CSDN主页:Zeeland🔥📣 我的博客:Zeeland📚 Github主页: Undertone0809 (Zeeland)&…

如何使用CSS实现一个响应式图片幻灯片(Responsive Image Slider)效果?

聚沙成塔每天进步一点点 ⭐ 专栏简介⭐ 响应式图片幻灯片⭐ HTML结构⭐ CSS样式⭐ JavaScript交互⭐ 写在最后 ⭐ 专栏简介 前端入门之旅:探索Web开发的奇妙世界 记得点击上方或者右侧链接订阅本专栏哦 几何带你启航前端之旅 欢迎来到前端入门之旅!这个…

Astro建站教程:安装nodejs,npm下载Astro,安装扩展

下载Nodejs LTS版:https://nodejs.org/en 安装步骤全默认即可,安装路径可以根据自己的爱好更改在桌面右键打开cmd或powershell,输入node -v和npm -v测试是否安装成功 浏览器打开https://docs.astro.build/en/install/auto/ 复制里面的npm cre…

安全狗陈奋:数据安全需要建立在传统网络安全基础之上

8月22日-23日,由创业邦主办的“2023 DEMO WORLD 企业开放式创新大会”在上海顺利举行。 作为国内云原生安全领导厂商,安全狗受邀出席此次活动。 本次大会以“拥抱开放”为主题,聚焦开放式创新,通过演讲分享、专场对接、需求发布…

你用过 Maven Shade 插件吗?

文章首发地址 Maven Shade插件是Maven构建工具的一个插件,用于构建可执行的、可独立运行的JAR包。它解决了依赖冲突的问题,将项目及其所有依赖(包括传递依赖)合并到一个JAR文件中。 下面是对Maven Shade插件的一些详解&#xff…

MySQL知识笔记——初级基础(实施工程师和DBA工作笔记)

老生长谈,MySQL具有开源、支持多语言、性能好、安全性高的特点,广受业界欢迎。 在数据爆炸式增长的年代,掌握一种数据库能够更好的提升自己的业务能力(实施工程师)。 此系列将会记录我学习和进阶SQL路上的知识&#xf…

Revit SDK 介绍:RayTraceBounce 光线反弹

前言 这个例子模拟光线反弹。 内容 通过修改参数,从(0,0,0)点向(1,0,0)方向射出光线,经过若干次反弹之后的结果。如图所示: 在Revit API 中&…

Codeforces-Round-895-Div-3

A. Two Vessels 题目翻译 你有两个装有水的容器。第一个容器含有 a a a克水,第二个容器含有 b b b克水。这两艘船都非常大,可以容纳任意数量的水。 您还有一个空杯子,最多可容纳 c c c克水。 一次,您可以从任何容器中舀出多 c…

go语言基本操作--四

面向对象编程 对于面向对象编程的支持go语言设计得非常简洁而优雅。因为,Go语言并没有沿袭面向对象编程中诸多概念,比如继承(不支持继承,尽管匿名字段的内存布局和行为类似继承,但它并不是继承)、虚函数、构造函数和析构函数、隐…

HTTP代理如何设置

HTTP代理是一种非常重要的网络工具,它可以帮助我们在访问互联网时提高访问速度,保护用户隐私等等。在使用HTTP代理时,需要先进行设置。下面就来介绍一下HTTP代理如何设置。 一、了解HTTP代理 在开始设置HTTP代理之前,我们需要先了…

html 标签简介

概述 标签的效果不重要,重要的是标签的语义。 文本标签 文本标签用于包裹:词汇、短语等。排版标签,比如div,p,h1等。排版标签更宏观(大段的文字),文本标签更微观(词汇、短语)。文…

西门子LAD编程扫描周期带来的步序跳转问题

一、程序目的 按一下启动,程序进入第一步。延时五秒之后进入第二步进行自加1,然后回到第一步继续延时5秒循环,依次类推。 二、出现的问题 第一次程序进入第一步时,定时器正常定时,计数正常加1,但从第二轮开…

文件上传漏洞-upload靶场5-12关

文件上传漏洞-upload靶场5-12关通关笔记(windows环境漏洞) 简介 ​ 在前两篇文章中,已经说了分析上传漏的思路,在本篇文章中,将带领大家熟悉winodws系统存在的一些上传漏洞。 upload 第五关 (大小写绕过…

【DataV/echarts】vue中使用,修改地图和鼠标点击部分的背景色

引入:使用 DataV 引入地图的教程是参考别人的,主要介绍修改地图相关的样式; 引入地图 是参考别人的,这里自己再整理一遍,注意需要安装 5 版本以上的 echarts; DataV 网址:https://datav.aliyun.…

浅谈Http协议、TCP协议(转载)

TCP标志位,有6种标示:SYN(synchronous建立联机) ,ACK(acknowledgement 确认) ,PSH(push传送),FIN(finish结束) ,RST(reset重置), URG(urgent紧急) Sequence number(顺序号码) ,Acknowledge num…

《向量数据库指南》——向量数据库Milvus Cloud 2.3的可运维性:从理论到实践

一、引言 在数据科学的大家庭中,向量数据库扮演着重要角色。它们通过独特的向量运算机制,为复杂的机器学习任务提供了高效的数据处理能力。然而,如何让这些数据库在生产环境中稳定运行,成为了运维团队的重要挑战。本文将深入探讨向量数据库的可运维性,并分享一些有趣的案…

新风机未来什么样?

新风机在未来将会有许多令人期待的发展和改进,让我们一起来看一看吧!以下是新风机未来的一些可能性: 智能化和智能家居:新风机将更多地与智能家居系统整合,通过物联网和人工智能技术,实现智能控制和智能调节…