目录
测试结果:
02 提出的方法
测试结果:
预测有3个步骤,速度比较慢
02 提出的方法
1. 针对舞蹈序列的VQ-VAE和编舞记忆
与之前的方法不同,我们不学习从音频特征到 3D 关键点序列的连续域的直接映射。相反,我们先让神经网络“观看”大量的舞蹈数据,自己从里面“总结”出有意义的舞蹈元素,并且记录下来成为“编舞记忆”。
编舞记忆中,每个元素都是从专业舞蹈中提取的符合空间要求的标准舞姿。具体来说,我们设计了一个针对人体姿态序列的VQ-VAE(Vector Quantized Variational Auto-Encoder)网络,对舞蹈数据的姿态序列进行编码和量化到一个编码本Z中。
Z表示VQ-VAE的量化编码本,即“编舞记忆”,其中每一个元素都代表着一个标准的舞姿。为了使舞蹈记忆能涵盖更广泛的舞蹈动作,我们对舞蹈动作的上下身用独立的VQ-VAE进行学习,分别得到上下半身的编码本,并对上下半身进行组合式的拼接。我们还单独学习一个网络分支Dv,用于预测人体关键点的整体位移。
训练VQ-VAE的损失函数分为:
其中,重构函数不仅考虑到对关键点位置P的重构,还考虑到对一阶(速度)和二阶(加速度)导数的重构。
2. 动作GPT (motion GPT)
在我们从舞蹈数据中总结出了标准的舞姿库“编舞记忆”后,编舞的任务就变成了对音乐的每一时刻,选择一个合适的舞姿与之对应。这一步我们用到了GPT(Generative Pretrained Transformer)。
对于每一时刻t,GPT根据0到t-1时刻的音乐(m)、上半身(u)和下半身(l)信息来预测t时刻的上、下半身舞姿,并对每一个存在编舞记忆中的舞姿计算一个概率。而GPT的学习则是通过对预测的概率与真实动作之间的Cross-Entropy损失函数进行优化。
3. “演员-评论家”(Actor-Critic)学习
GPT的训练是直接而有效的。然而,这个框架有一个弊端,即很难向损失函数中加入一些人工定义的正则化项(比如希望让生成的舞蹈更加符合音乐节拍),因为GPT的学习的对象是舞姿在编舞记忆中的编号。
为了解决这个问题,我们采用了一种名为“演员-评论家”的强化学习框架。具体来说,我们把GPT前3层视作一个表示当前状态的“状态网络”,后几层视作一个产生“动作”的“演员网络”,并单独引入一个新的GPT分支作为“评论家网络”。评论家网络的打分和人工设计的奖励函数R,将决定GPT生成的舞蹈是好的(应该鼓励),还是不好的(应该避免),并通过对相应损失函数的优化提升GPT的效果。
03 实验结果
1. 对比实验