【机器学习】进阶学习:详细解析Sklearn中的MinMaxScaler---原理、应用、源码与注意事项

【机器学习】进阶学习:详细解析Sklearn中的MinMaxScaler—原理、应用、源码与注意事项

这篇文章的质量分达到了97分,虽然满分是100分,但已经相当接近完美了。请您耐心阅读,我相信您一定能从中获得不少宝贵的收获和启发~

在这里插入图片描述

🌈 个人主页:高斯小哥
🔥 高质量专栏:Matplotlib之旅:零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程👈 希望得到您的订阅和支持~
💡 创作高质量博文(平均质量分92+),分享更多关于深度学习、PyTorch、Python领域的优质内容!(希望得到您的关注~)


🌵文章目录🌵

  • 🧠 一、MinMaxScaler简介
  • 🔧 二、MinMaxScaler原理与应用
  • 🔍 三、MinMaxScaler源码的简单复现与解析
  • 💡 四、注意事项
  • 🔄 六、MinMaxScaler与StandardScaler的比较
  • 📚 七、总结

🧠 一、MinMaxScaler简介

  MinMaxScaler是Scikit-learn库中的一个重要工具,主要用于数据的归一化处理。归一化是将数据按比例缩放,使之落入一个小的特定区间,如[0,1]或[-1,1]。MinMaxScaler通过计算特征列的最小值和最大值来实现归一化,它对于稳定模型的训练过程和提高模型的性能非常重要。

归一化的主要好处包括但不限于:

  1. 提高模型的收敛速度,因为特征都在相近的尺度上。
  2. 提高模型的精度,因为一些算法在特征尺度相近时表现更好。
  3. 使得不同单位的特征之间可以进行比较和加权。

🔧 二、MinMaxScaler原理与应用

MinMaxScaler的原理很简单,它使用下面的公式进行归一化:

X_std = (X - X.min(axis=0)) / (X.max(axis=0) - X.min(axis=0))
X_scaled = X_std * (max - min) + min

其中,X 是原始数据,minmax 是你想要缩放到的范围,通常是[0, 1]。

在应用归一化后,有时候我们需要将数据从归一化的范围转换回原始的范围,这个过程称为反归一化。使用MinMaxScaler进行反归一化的过程相对简单,只需按照下面的公式进行:

X_original = X_scaled * (max_original - min_original) + min_original

这里,max_originalmin_original 是原始数据的最小值和最大值。

在Sklearn中,使用MinMaxScaler进行归一化和反归一化的示例如下:

from sklearn.preprocessing import MinMaxScaler
import numpy as np# 示例数据
data = np.array([[1, 2], [3, 4], [5, 6]])# 创建MinMaxScaler对象
scaler = MinMaxScaler(feature_range=(0, 1))# 使用fit_transform方法拟合数据并进行转换
scaled_data = scaler.fit_transform(data)print("Original data:\n", data)
print("Scaled data:\n", scaled_data)# 使用inverse_transform方法将缩放后的数据转换回原始尺度
original_data = scaler.inverse_transform(scaled_data)print("Data after inverse transformation:\n", original_data)

代码输出:

Original data:[[1 2][3 4][5 6]]
Scaled data:[[0.  0. ][0.5 0.5][1.  1. ]]
Data after inverse transformation:[[1. 2.][3. 4.][5. 6.]]

  在这个示例中,MinMaxScaler首先使用fit_transform方法拟合数据并计算每个特征(即每列分别计算)的最小值和最大值,然后将数据缩放到指定的范围(在这个例子中是[0, 1])。之后,使用inverse_transform方法可以将缩放后的数据还原到原始尺度。

  MinMaxScaler的应用非常广泛,特别是在需要对数据进行归一化处理以消除量纲影响的机器学习算法中。通过将数据缩放到相同的范围,MinMaxScaler可以帮助算法更好地学习和优化。然而,需要注意的是,MinMaxScaler对异常值非常敏感,因为异常值会影响最小值和最大值的计算,从而影响缩放效果。在处理包含异常值的数据时,可能需要考虑使用其他的归一化方法,如RobustScaler或StandardScaler。

🔍 三、MinMaxScaler源码的简单复现与解析

MinMaxScaler的源码包含了fit、fit_transform以及inverse_transform等关键方法:

  1. fit方法用于计算训练数据的最小值和最大值
  2. fit_transform方法则用于根据这些最小值和最大值来缩放数据
  3. inverse_transform方法则用于将缩放后的数据转换回原始尺度。

以下是MinMaxScaler源码的一个简化版本,包括这些主要方法:

import numpy as npclass MinMaxScaler:def __init__(self, feature_range=(0, 1)):self.feature_range = feature_rangeself.min_ = Noneself.data_min_ = Noneself.data_max_ = Nonedef fit(self, X):"""计算训练集的最小值和最大值"""self.data_min_ = np.min(X, axis=0)self.data_max_ = np.max(X, axis=0)self.min_ = np.min(self.data_min_)return selfdef fit_transform(self, X):"""根据拟合的最小值和缩放比例转换数据"""if self.min_ is None:raise ValueError("This MinMaxScaler instance is not fitted yet. Call 'fit' with some data first.")X_std = (X - self.data_min_) / (self.data_max_ - self.data_min_)X_scaled = X_std * (self.feature_range[1] - self.feature_range[0]) + self.feature_range[0]return X_scaleddef inverse_transform(self, X):"""将缩放后的数据转换回原始尺度"""if self.min_ is None:raise ValueError("This MinMaxScaler instance is not fitted yet. Call 'fit' with some data first.")X_std = (X - self.feature_range[0]) / (self.feature_range[1] - self.feature_range[0])X_original = X_std * (self.data_max_ - self.data_min_) + self.data_min_return X_original# 假设我们有一些原始数据
original_data = np.array([[1, 2], [3, 4], [5, 6]])# 创建一个MinMaxScaler对象
scaler = MinMaxScaler()# 使用fit_transform方法对数据进行归一化
scaler.fit(original_data)
normalized_data = scaler.fit_transform(original_data)
print("Normalized data:")
print(normalized_data)# 使用inverse_transform方法进行反归一化
original_data_reconstructed = scaler.inverse_transform(normalized_data)
print("Reconstructed original data:")
print(original_data_reconstructed)

代码输出:

Normalized data:
[[0.  0. ][0.5 0.5][1.  1. ]]
Reconstructed original data:
[[1. 2.][3. 4.][5. 6.]]

  在上面的代码中,fit方法计算了训练数据集X中每个特征的最小值和最大值。fit_transform方法则利用这些参数将输入数据X转换为指定范围feature_range内的值。inverse_transform方法则执行相反的操作,将缩放后的数据转换回原始尺度。

  需要注意的是,这个简化版本假设输入数据X至少包含一个特征(尚未对空值进行异常处理),并且所有特征的最小值和最大值都不相同(避免出现除0情况)。在实际应用中,Scikit-learn的MinMaxScaler实现会包含更多的错误检查和边界情况处理。

  通过解析源码,我们可以更好地理解MinMaxScaler的工作原理,并在必要时自定义或扩展其功能。然而,在实际应用中,通常推荐使用Scikit-learn库中经过优化和测试的完整实现

💡 四、注意事项

在使用MinMaxScaler时,需要注意以下几点:

  1. 数据的分布:MinMaxScaler对数据的分布没有假设,但如果数据集中存在异常值,它们会对最小值和最大值的计算产生很大影响,进而影响到归一化的效果。

  2. 新数据的处理:当使用fit方法计算了训练数据的最小值和最大值后,如果有新的数据需要归一化,应使用相同的最小值和最大值。如果直接使用新数据再次调用fit方法,会导致归一化结果的不一致。

  3. 特征重要性:归一化可能会改变特征之间的相对重要性。因为MinMaxScaler仅仅是将数据缩放到指定的范围,而不考虑特征的分布或其他属性,所以它不会保留任何关于原始特征重要性的信息。在需要特征重要性的场景中,可能需要结合其他方法,如使用特征选择算法或考虑特征的统计属性。

  4. 数据泄露问题:在机器学习的实践中,尤其是在构建预测模型时,需要特别注意避免数据泄露。如果在训练过程中,测试集或验证集的数据被用于MinMaxScaler的fit方法,那么模型可能会因为“看到”了测试集的信息而表现出过高的性能,这会导致对模型泛化能力的错误估计。因此,应该始终确保只使用训练集数据来fit MinMaxScaler

  5. 数据类型和缺失值:MinMaxScaler默认处理数值型数据。如果数据集中包含非数值型特征或缺失值,需要预先进行处理。例如,可以将非数值型特征进行编码,或者用适当的方法填充或删除含有缺失值的样本。

  6. 保留原始数据:在进行归一化或其他预处理操作后,建议保留原始数据。这是因为某些情况下,可能需要重新访问或分析原始数据,或者将归一化后的数据与其他未归一化的数据合并。

  7. 与深度学习框架的集成:当使用深度学习框架(如TensorFlow或PyTorch)时,可能需要自定义归一化层或操作,以便在模型训练过程中直接应用归一化。虽然Scikit-learn的MinMaxScaler可以与这些框架一起使用,但了解如何在框架内部实现归一化也是很重要的。

总之,MinMaxScaler是一个简单而有效的工具,但在使用时需要注意上述事项,以确保归一化过程不会对模型性能产生负面影响,并能够充分利用归一化带来的好处。

🔄 六、MinMaxScaler与StandardScaler的比较

MinMaxScaler和StandardScaler都是Scikit-learn中常用的特征缩放方法,但它们的工作原理和适用场景有所不同:

  • MinMaxScaler通过线性变换将特征值缩放到给定的范围(通常是[0, 1]),它直接依赖于数据的最大值和最小值。这种方法对于有界特征或需要保持特征之间相对大小关系的场景特别有用。然而,由于MinMaxScaler对异常值敏感,因此如果数据集中包含极端值,可能会导致缩放后的数据不稳定或失去有意义的结构。

  • StandardScaler使用均值和标准差来缩放特征,使其具有零均值和单位方差。这种方法更适合于那些假设特征服从正态分布或近似正态分布的场景。StandardScaler对异常值的鲁棒性更好,因为它基于整个数据集的统计属性进行缩放,而不是仅仅依赖于最大值和最小值。

  在选择使用MinMaxScaler还是StandardScaler时,需要考虑数据的特性、模型的假设以及具体的应用场景。例如,在处理像素值或百分比等具有明确边界的数据时,MinMaxScaler可能更合适;而在处理连续型特征且假设它们服从正态分布时,StandardScaler可能更合适。

  此外,值得注意的是,除了MinMaxScaler和StandardScaler之外,还有其他一些特征缩放方法可供选择,如MaxAbsScaler、RobustScaler等。每种方法都有其特定的应用场景和优缺点,因此在实际应用中需要根据具体情况进行选择。

📚 七、总结

  本文详细解析了Scikit-learn中的MinMaxScaler的原理、应用、源码和注意事项。通过深入了解其工作原理和适用场景,我们可以更好地利用这一工具来优化机器学习模型的性能。同时,我们也讨论了MinMaxScaler与StandardScaler之间的比较,以便在实际应用中根据数据特性和模型需求做出合适的选择。

  在使用MinMaxScaler时,需要注意数据的分布、新数据的处理、特征重要性、数据泄露问题以及数据类型和缺失值等方面。此外,与深度学习框架的集成也是一个值得考虑的问题。

  总之,MinMaxScaler是一个强大而灵活的工具,通过合理使用它,我们可以提高机器学习模型的稳定性和性能。希望本文能够帮助你更好地理解和应用MinMaxScaler,并在实际项目中取得更好的效果。🚀

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/736271.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

free pascal 调用 C#程序读 Freeplane.mm文件,生成测试用例.csv文件

C# 请参阅:C# 用 System.Xml 读 Freeplane.mm文件,生成测试用例.csv文件 Freeplane 是一款基于 Java 的开源软件,继承 Freemind 的思维导图工具软件,它扩展了知识管理功能,在 Freemind 上增加了一些额外的功能&#x…

hadoop报错:HADOOP_HOME and hadoop.home.dir are unset. 解决方法

参考:https://blog.csdn.net/weixin_45735242/article/details/120579387 解决方法 1.下载apache-hadoop-3.1.0-winutils-master 官网下载地址: https://github.com/s911415/apache-hadoop-3.1.0-winutils win配置系统环境: 然后重启idea…

一文了解原型和原型链

本文重点概念: 1、所有的对象都是new一个函数创建的 2、所有的函数都有一个属性prototype,称为函数原型 3、函数原型得到的这个对象都有一个属性constructor,指向该函数 4、所有的对象都有一个属性:隐式原型__proto__,隐式原型…

机器学习,剪刀,石头,布

计算机视觉:剪刀,石头,步 TensorFlow AI人工智能及Machine Learning训练图集的下载建立分类模型并用图像进行训练检验模型总结当前AI Machine Learning 异常火爆,希望在MCU上使用机器学习,做图像识别的工作。看到一个剪刀,石头,步的学习程序,给大家分享一下。 TensorFl…

Buran勒索病毒通过Microsoft Excel Web查询文件进行传播

Buran勒索病毒首次出现在2019年5月,是一款新型的基于RaaS模式进行传播的新型勒索病毒,在一个著名的俄罗斯论坛中进行销售,与其他基于RaaS勒索病毒(如GandCrab)获得30%-40%的收入不同,Buran勒索病毒的作者仅占感染产生的25%的收入,…

AI创造的壁纸,每一幅都是视觉盛宴!

1、方小童在线工具集 网址: 方小童 该网站是一款在线工具集合的网站,目前包含PDF文件在线转换、随机生成美女图片、精美壁纸、电子书搜索等功能,喜欢的可以赶紧去试试!

本地部署推理TextDiffuser-2:释放语言模型用于文本渲染的力量

系列文章目录 文章目录 系列文章目录一、模型下载和环境配置二、模型训练(一)训练布局规划器(二)训练扩散模型 三、模型推理(一)准备训练好的模型checkpoint(二)全参数推理&#xff…

2021年江苏省职业院校技能大赛高职组 “信息安全管理与评估”赛项任务书

2021年江苏省职业院校技能大赛高职组 “信息安全管理与评估”赛项任务书 一、赛项时间:二、赛项信息三、竞赛内容:第一阶段任务书(300分)任务1:网络平台搭建(60分)任务2:网络安全设备…

AI预测福彩3D第6弹【2024年3月11日预测--新算法重新开始计算日期】

由于周末休息了两天,没有更新文章,这两天也没有对福彩3D的预测。今天继续咱们使用AI算法来预测3D吧~ 前面我说过,我的目标是能让百十个各推荐7个号码,其中必有中奖号码,这就是7码定位,只要7码定位稳定了&am…

【前端系列】CSS 常见的选择器

CSS 常见的选择器 CSS(层叠样式表)是一种用于描述网页样式的标记语言,它定义了网页中各个元素的外观和布局。在 CSS 中,选择器是一种用于选择要应用样式的 HTML 元素的模式。选择器允许开发人员根据元素的类型、属性、关系等来选…

JVM3_数据库连接池虚引用ConnectionFinalizerPhantomReference引起的FullGC压力问题排查

背景 XOP服务运行期间,查看Grafana面板,发现堆内存周期性堆积,观察FullGC的时间,xxx,需要调查下原因 目录 垃圾收集器概述 常见的垃圾收集器分区收集策略为什么CMS没成为默认收集器 查看JVM运行时环境分析快照 Pha…

基于PCtoLCD实现OLED汉字取模方法

0 工具准备 PCtoLCD2002 NodeMCU(ESP8266)(验证OLED字模效果) 0.96寸OLED显示屏 1 基于PCtoLCD实现OLED汉字取模方法 1.1 基础知识介绍 0.96存OLED显示屏包含128x64个像素点,x轴方向为128个像素点,y轴方向…

[AutoSar]BSW_Com011 CAN IF 模块配置

目录 关键词平台说明一、CanIfCtrlDrvCfgs二 、CanIfTrcvDrvCfgs三、CanIfDispatchCfg四、CanIfBufferCfgs五、CanIfHrhCfgs六、CanIfHthCfgs七、CanIfRxPduCfgs八、CanIfTxPduCfgs九、CanIfPrivateCfg十、CanIfPublicCfg 关键词 嵌入式、C语言、autosar、OS、BSW 平台说明 …

目前最强大语言模型!谷歌开源 | 开源日报 No.196

google/gemma_pytorch Stars: 3.4k License: Apache-2.0 gemma_pytorch 是 Google Gemma 模型的官方 PyTorch 实现。 提供了 Gemini 模型技术的轻量级、最新开放模型支持文本到文本、仅解码器大语言模型提供英文版本,包含开源权重、预训练变体和指导调整变体支持…

natfrp和FRP配置SSL的基本步骤和bug排查

获取免费/付费SSL 我直接买了一年的ssl证书 设置 主要参考:https://doc.natfrp.com/frpc/ssl.html 遇到的Bug root域名解析是ALIAS,不是CNAME不要用NATFRP (SakuraFrp)同步Joplin,会出现webdav错误导致大量笔记被…

linux上安装fastdfs及配置

一、基础环境准备 1、所需软件 名称说明libfastcommonfastdfs分离出的一些公用函数包fastdfsfastdas软件包fastdfs-nginx-modulefastdfst和nginx的关联模块nginxnginxl软件包 2、编辑环境 安装一些基础的支持环境 yum install git gccc gcc-c make automake autoconf libto…

线性代数(一)——向量基础

向量基础 1、向量和线性组合2、向量的模和点乘3、矩阵4、参考 线性代数的核心是向量的加和乘两种运算的组合,本篇博客为线性代数的一个引子,主要从向量、线性组合和矩阵逐步引出线性代数的相关知识。 1、向量和线性组合 首先介绍的是向量相关&#xff0…

DHCP中继实验(思科)

华为设备参考:DHCP中继实验(华为) 一,技术简介 DHCP中继,可以实现在不同子网和物理网段之间处理和转发DHCP信息的功能。如果DHCP客户机与DHCP服务器在同一个物理网段,则客户机可以正确地获得动态分配的IP…

PCL 约束Delaunay三角网(版本二)

目录 一、算法概述二、代码实现三、结果展示四、测试数据本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。 一、算法概述 PCL 点云Delaunay三角剖分一文给出了PCL中Delaunay三角网算法的基础用法。本文在基础用法的基…

Python与FPGA——膨胀腐蚀

文章目录 前言一、膨胀腐蚀二、Python实现腐蚀算法三、Python实现膨胀算法四、Python实现阈值算法五、FPGA实现腐蚀算法总结 前言 腐蚀是指周围的介质作用下产生损耗与破坏的过程,如生锈、腐烂等。而腐蚀算法也类似一种能够产生损坏,抹去部分像素的算法。…