【深度学习】基于卷积神经网络的铁路信号灯识别方法

基于卷积神经网络的铁路信号灯识别方法

    • 摘 要:
    • 1 引言
    • 2 卷积神经网络模型
      • 2.1 卷积神经网络结构
        • 2.2.1 卷积层
        • 2.2.2 池化层
        • 2.2.3 全连接层
    • 3 卷积神经网络算法实现
      • 3.1 数据集制作
      • 3.2 卷积神经网络的训练过程
      • 3.2.1 前向传播过程
    • 4 实验
    • 5 结语

摘 要:

目前中国货运铁路和既有线铁路采用的仍是司机通过瞭望铁路沿线信号灯来指导行驶。本文介绍了一种基于卷积神经网络(CNN)的铁路信号“三显示”通过信号机识别方法,为司机二次甄别信号灯颜色。本文制作“三显示”信号灯数据集,在 TensorFlow 平台搭建卷积神经网络,建立以卷积层数、数据集大小以及迭代次数为变量的对比实验。在样本条件下,4 层卷积网络特征提取效果最优,进一步进行卷积层中卷积核的深度对网络收敛性和收敛速度与识别精度的影响的实验,最终,最优网络下识别率可
达 99.16%。

1 引言

铁路运输是我国交通运输领域的重要组成部分,目前,我国既有线铁路仍有部分线路需司机瞭望以获取信号灯颜色。为保障铁路运输安全,同时为司机提供准确参考信息,本文采用卷积神经网络对铁路信号色灯进行识别。
本文着重阐述在以下两种卷积神经网络的基础上自行设计的网络结构提出、进展和最终效果。随着Hinton 等[1]人解决了深度学习模型优化问题,深度学习得到迅速发展。基于 1998 年 LeCun 等[2]提出并首先成功应用于数字识别问题的卷积神经网络 LeNet-5和 2014 年由牛津大学提出并准确进行图像分类和目标 检 测 的 卷 积 神 经 网 络 VGG (Visual geometrygroup)[3]设计出能够准确识别信号灯信号卷积神经网络。其中,LeNet-5 由以 32321 的单通道图像像素作为输入,经 2 层卷积 3 层全连接组成,并在小规模手写数字识别中取得较好结果。VGG以 2242243的三通道图像像素作为输入,经 13 层卷积 3 层全连接组成,并在 2014 年的 ILSVRC 比赛中,在 Top-5中取得了 92.3%的正确率。不同于其他深度学习框架,卷积神经网络具有位移、畸变鲁棒性,并行性等特点,是基于深度学习理论的人工神经网络,其中的卷积结构既可减少深层网络占用空间,也可减少网络参数数量,缓解模型过拟合。本文通过制作“三显示”信号灯数据集,在TensorFlow 平台搭建多层卷积神经网络,建立以卷积层数(4、5、6 层)、卷积层中不同卷积核个数为变量的对比实验,最终找到最优卷积神经网络结构并完成对铁路信号色灯的正确识别。

2 卷积神经网络模型

2.1 卷积神经网络结构

卷积神经网络由多个神经网络层构成,每层神经网络由多个神经元组成,其结构如图 1 所示。
在这里插入图片描述

卷积神经网络可分为:输入层、卷积层、池化层、全连接层和输出层。具体介绍如下:
(1)输入层:通过对输入图像进行读写操作,将原图转化成像素值传入到输入层。
(2)卷积层:卷积核滑动进行卷积运算,提取输入层图像特征。卷积核维度和个数均会对输入特征提取量产生影响。
(3)池化层:同样有与卷积核相似的池化核对卷积层图像进行子抽样,在保证了有用信息不降低的前提下,减少数据处理量。
(4)全连接层:可含有多个全连接层,代表神经网络中的隐藏层部分,第一层与上一层池化层输出相连。
(5)输出层:输出层的设计取决于卷积神经网络所需结果,一般为分类器。
在这里插入图片描述

2.2.1 卷积层

通过一个可学习卷积核和一个激活函数,即可得
到一个输出特征图。卷积核的维度和个数不同使得特
征图不同,卷积层计算公式为在这里插入图片描述

2.2.2 池化层

池化的原理是将上一层输出特征图进行缩小,即
在这里插入图片描述

2.2.3 全连接层

全连接层中,将上一层所得特征图数据拉伸为一维特征作为全连接层输入。全连接层输出通过对输入加权求和并通过激活函数的响应得到
在这里插入图片描述

3 卷积神经网络算法实现

3.1 数据集制作

本文信号灯数据集来源于铁路信号实验室,拍摄铁路信号灯视频,运用 AdobePremiere Pro CC 2015 分帧得到大量图片。将数据集中信号灯图片分为红色、绿色、黄色共 3 类。每类选出 300 张图片作为训练集,100 张图片作为测试集。该数据集包含不同视角的铁路信号灯图片,在这里插入图片描述

3.2 卷积神经网络的训练过程

3.2.1 前向传播过程

本实验卷积层网络初始化主要采取两种方式,分别为 Xavier 方式和正则化方式,偏置初始化为0.00001。全连接层权重初始化采取 Xavier 方式,偏
置初始化为 0. 1。本 实 验 前 向 传 播 训 练 过 程 中 , 卷 积 层 采 用
Softmax 分类输出,loss 采用交叉熵求平均,优化器采用梯度下降 GDO 优化器,并使用最小 minimize 取出损失。其中,全连接层使用 Dropout 随机损失函数可避免网络过拟合,学习率固定,未采用自适应学习率。输入图片数据时,批尺寸的图片输入采用训练样本随机抽取形式。3.2.2 反向传播过程在反向传播算法中,主要训练的网络参数为:卷积层、全连接层网络权重和各层网络偏置参数。反向传播算法主要基于梯度下降法,网络参数被初始化后通过梯度下降法向训练误差 loss 减小方向调整。通过所有网络层的灵敏度建立总误差对所有网络参数的偏导数,进而得到使训练误差减小的方向。训练流程图如图 4 所示。在这里插入图片描述
在这里插入图片描述

4 实验

针对 4 层卷积神经网络的结构,进一步修改网络参数,对比不同卷积层卷积核的个数对测试精度的影响,对卷积网络训练过程中收敛速度,测试精度进行对比试验。
表 1 是我们设计出的几组卷积核对比组,前面 6组按每个池化层分界组,按比例增加卷积核的个数,后面 3 组对比不同层卷积核的排列顺序,由少到多、由多到少的顺序和均匀分布顺序对实验结果的影响, 由于选取的初始化方式可能导致的出现拟合现象,每个数量经过多次的对比,可能存在实验上的读取数据出现误差,以下网络数量的选择提供出了网络收敛及稳定性的比较。上表显示了上述网络经过迭代以后最终趋于稳定时我们用测试集测出的精度结果,由于迭代到后期训练 loss 损失很小接近于 0,所以我们选取
的是迭代次数在25000次以内的测试精度趋于不变时的网络的转折点作为网络的稳定时测试精度,其中网络随着迭代次数的增加测试精度增加,逐渐趋于不变。
由上述实验对比发现,1-6 类的对比中随着网络中卷积核的增加收敛速度变慢,由于计算量的增加以及深度的增加网络中参数的更新变得缓慢卷积核个
数为 80 个时可见针对本数据集大小与特征,网络存在最优值如图 4 所示。其中网络结构为均匀分布总数为 68 个的卷积核排列得到最快的收敛,倒叙排列的网络在 25000 次迭代次数内,没有收敛,而且网络的个数增加的过程中,需要迭代次数增大才能达到相同收敛结果,同时前期训练过程中网络训练精度波动增大,多次训练同一网络出现过拟合现象次数增多,表
明网络损失未能按梯度进行下降。在这里插入图片描述
在这里插入图片描述
第 7 类卷积核个数按照增序变化,网络训练过程中前期训练中损失下降较少,中期过程时,有一阶跃变化如图 4,后期 loss 接近于 0。第 8 类时卷积核个数按照降序变化,网络训练过程中损失下降较快,在4400 轮迭代次数时,网络陷入局部最优,此时损失已经接近于0,网络的测试精度在25000次时徘徊在0.5,可知网络训练采用降序影响网络收敛较大,较难得到较高的测试精度。第 9 类卷积核选择的是均匀顺序,网络收敛速度较为理想在 2500 轮迭代时已经达到了0.89 的测试精度,并在 25000 轮时测试精度达到0.9324。由于卷积网络层数多、训练数据较少、训练模型结构复杂及 Overtraining 拟合训练数据中噪声和训练样例没有代表性特征等原因,导致网络易出现过拟合现象。为更好的避免这种现象,可在原数据集基础上
进行图像锐化、明暗度调整等操作随机加入噪声;可采用合适的卷积模型卷积预处理后的数据集;也可添加正则项将权值大小加入损失函数以减少过度拟合。

5 结语

本文建立卷积神经网络对铁路信号色灯图片进行神经网络训练,使用卷积神经网络提取铁路信号色灯特征,通过目标特征提取池化,最终在信号灯样本
图片集下经过对比试验,在最优范围内的 4 层卷积神经网络,卷积核个数为 80 时,按照增序排布、分布较均匀的方式测试最高识别率为 99.16%,可通过在小范围内进一步优化得到更高的识别率。CNN 网络在铁路信号色灯识别上的应用将为铁路司机提供信号灯信息参考,同时更大程度的保障铁路行车安全。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/73601.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

系统架构设计师(第二版)学习笔记----系统架构设计师概述

【原文链接】系统架构设计师(第二版)学习笔记----系统架构设计师概述 文章目录 一、架构设计师的定义、职责和任务1.1 架构设计师的定义1.2 架构设计师的任务 二、架构设计师应具备的专业素质2.1 架构设计师应具备的专业知识2.2 架构设计师的知识结构2.3…

网络威胁防御+资产测绘系统-Golang开发

NIPS-Plus 网络威胁防御资产测绘系统-Golang开发 项目地址:https://github.com/jumppppp/NIPS-Plus NIPS-Plus 是一款使用golang语言开发的网络威胁防御系统(内置资产测绘系统) 网络威胁流量视图网络威胁详细信息浏览列表网络威胁反制探测攻…

CRM 自动化如何改善销售和客户服务?

许多 B2B 和 B2C 公司都使用 CRM 系统来组织业务流程,使复杂的任务更容易完成。企业可以使用 CRM 自动化来自动化工作流程,让团队有更多的时间来执行高价值的任务,而不是陷于一堆琐碎事情中。 什么是CRM自动化? CRM 自动化是指 C…

VScode SSH无法免密登录

配置方法 引用高赞贴:点击 debug方法 连不上需要找到问题原因,看ssh的 log Linux服务器:2222是我们指定的端口,可以是1234等 sudo /usr/sbin/sshd -d -p 2222windows这边:端口号要一致 ssh -vvv ubuntusername192…

自然语言处理——数据清洗

一、什么是数据清洗 数据清洗是指发现并纠正数据文件中可识别的错误的最后一道程序,包括检查数据一致性,处理无效值和缺失值等。与问卷审核不同,录入后的数据清理一般是由计算机而不是人工完成。 ——百度百科 二、为什么要数据清洗 现实生…

智能井盖传感器:高效守护城市道路安全

近年来,井盖出问题导致事故的报道时有发生,但却容易被公众所忽视。井盖作为城市基础设施的一部分,主要用于保护下方的供水管道、下水道以及电信线缆等。然而,由于长时间使用、缺乏维护、设计不合理等原因,井盖出现问题…

OpenCV C++案例实战三十三《缺陷检测》

OpenCV C案例实战三十三《缺陷检测》 前言一、结果演示二、缺陷检测算法2.1、多元模板图像2.2、训练差异模型 三、图像配准3.1 功能源码3.1 功能效果 四、多元模板图像4.1 功能源码 五、缺陷检测5.1 功能源码 六、效果演示总结 前言 本案例将使用OpenCV C 进行PCB印刷缺陷检测…

UMA 2 - Unity Multipurpose Avatar☀️一.让UMA角色动起来

文章目录 🟥 项目基础配置1️⃣UMA_DCS 预制体2️⃣创建 UMA 角色🟧 让UMA动起来1️⃣ 新建空场景,添加UMA_DCS预制体2️⃣配置 vBasicController_Template🟥 项目基础配置 1️⃣UMA_DCS 预制体 将 UMA_DCS 预制体放到场景中 2️⃣创建 UMA 角色 创建空物体,添加 Dy…

陪诊系统|陪诊软件开发|陪诊系统搭建功能

为了顺应不断变化的市场需求,有些行业慢慢销声匿迹,有些行业刚刚崭露头角,目前陪诊的市场需求也在逐渐扩大,陪诊小程序也随之到来,主要面向独居老人,孕妇,残障人士等等给予专业性的陪诊就医服务…

结构方程模型SEM、路径分析房价和犯罪率数据、预测智力影响因素可视化2案例...

原文链接:http://tecdat.cn/?p25044 在本文,我们将考虑观察/显示所有变量的模型,以及具有潜在变量的模型(点击文末“阅读原文”获取完整代码数据)。 1 简介 第一种有时称为“路径分析”,而后者有时称为“测…

成都睿趣科技:现在开一家抖音小店还来得及吗

随着社交媒体的迅猛发展,抖音已经成为了一个全球范围内广受欢迎的社交平台。在这个短视频应用上,人们分享着各种各样的内容,从搞笑段子到美食教程,再到时尚搭配和手工艺品制作。随着用户数量的不断增长,很多人都在思考…

【动手学深度学习】--文本预处理

文章目录 文本预处理1.读取数据集2.词元化3.词表4.整合所有功能 文本预处理 学习视频:文本预处理【动手学深度学习v2】 官方笔记:文本预处理 对于序列数据处理问题,在【序列模型】中评估了所需的统计工具和预测时面临的挑战,这…

180B参数的Falcon登顶Hugging Face,最好开源大模型使用体验

文章目录 使用地址使用体验test1:简单喜好类问题使用地址 https://huggingface.co/spaces/tiiuae/falcon-180b-demo 使用体验 相比Falcon-7b,Falcon-180b拥有1800亿的参数量,在智能问答领域做到了Top 1。在回答问题的深度和广度上都明显优于只有70亿参数量的Falcon-7b,并…

【计算机基础知识9】前端设计模式与常见类型

目录 一、前言 二、设计模式的基本概念和原则 三、创建型设计模式 四、结构型设计模式 五、行为型设计模式 六、MVC和MVVM框架中的设计模式 七、实际应用案例分析 一、前言 在软件开发领域,设计模式是一种解决常见问题的最佳实践,它可以帮助开发…

C++ std::pair and std::list \ std::array

std::pair<第一个数据类型, 第二个数据类型> 变量名 例如&#xff1a; std::pair<int, string> myPair; myPair.first;拿到第一个int变量 myPair.second拿到第二个string变量 std::pair需要引入库#include "utility" std::make_pair() 功能制作一个…

快速文件复制与删除工具,将复制时文件夹里的原文件删除掉

无论是工作还是生活&#xff0c;我们都离不开文件的复制和管理。然而&#xff0c;手动复制文件不仅费时费力&#xff0c;而且容易出错。现在&#xff0c;我们为您推荐一款快速文件复制与删除工具&#xff0c;让您的文件管理更加高效&#xff01; 首先&#xff0c;我们要进入文…

巨人互动|Google海外户Google关键词工具有哪些?

关键词是Google SEO网站流量的关键&#xff0c;也是Google SEO优化的核心。一个好的关键词工具可以为你提供Google SEO排名所需的一切数据。那么Google关键词工具有哪些&#xff1f;下面小编来给大家介绍一下吧&#xff01; 1、Google Trends Google Trends 可以看到特定品牌或…

macOS通过钥匙串访问找回WiFi密码

如果您忘记了Mac电脑上的WiFi密码&#xff0c;可以通过钥匙串访问来找回它。具体步骤如下&#xff1a; 1.打开Mac电脑的“启动台”&#xff0c;然后在其他文件中找到“钥匙串访问”。 2.运行“钥匙串访问”应用程序&#xff0c;点击左侧的“系统”&#xff0c;然后在右侧找到…

Greenplum执行SQL卡住的问题

问题 今天社区群里面一位同学反映他的SQL语句执行会hang住&#xff0c;执行截图如下。 分析 根据提示信息&#xff0c;判断可能是网络有问题&#xff0c;或者是跟GP使用UDP包有关系。 此同学找了网络检查的人确定网络没有问题&#xff0c;于是猜测跟UDP包有关。 参考文章ht…

Mysql 性能分析(慢日志、profiling、explain)、读写分离(主从架构)、分库分表(垂直分库、垂直分表、水平分表)

查看系统性能参数 一条sql查询语句在执行前&#xff0c;需要确定查询执行计划&#xff0c;如果存在多种执行计划的话&#xff0c;mysql会计算每个执行计划所需要的成本&#xff0c;从中选择 成本最小的一个作为最终执行的执行计划 想要查看某条sql语句的查询成本&#xff0c;可…