YOLOv5-Openvino-ByteTrack【CPU】

纯检测如下:
YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】

注:YOLOv5和YOLOv6代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18
VS2019
注:Bytetrack中的lap和cython_bbox库需要编译安装,直接安装报错,故下载VS2019。

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv5和ByteTrack原理

YOLOv5详解
Github:https://github.com/ultralytics/yolov5

ByteTrack官网
ByteTrack算法步骤详解

3.1 安装lap和cython_bbox

1. lap
cd lap-0.4.0
python setup.py install2. cython_bbox【上传的文件可以直接进行第4步】
pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple【需先安装】
cd cython_bbox-0.1.3
(1)下载cython-bbox
(2)解压文件
(3)【已修改】在解压后的目录中,找到steup.py 文件,把extra_compile_args=[-Wno-cpp’],修改为extra_compile_args = {‘gcc’: [/Qstd=c99’]}
(4)在解压文件目录下运行python setup.py build_ext install

4 YOLOv5+ByteTrack主代码

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>是/否跟踪—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 8400×3, 85),其中85表示4个box坐标信息+置信度分数+80个类别概率,8400×3表示(80×80+40×40+20×20)×3,不同于v8与v9采用类别里面最大的概率作为置信度score;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls);
跟踪输入维度:(-1, 5),其中第二个维度5表示(x1, y1, x2, y2, conf);
跟踪输出维度:(-1, 6),其中第二个维度6表示(x1, y1, x2, y2, conf, ids)。

注:YOLOv6_1.0换模型文件可直接使用!

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPUimport copy
from bytetrack.byte_tracker import BYTETracker# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven','toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']class OpenvinoInference(object):def __init__(self, onnx_path):self.onnx_path = onnx_pathie = Core()self.model_onnx = ie.read_model(model=self.onnx_path)self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")self.output_layer_onnx = self.compiled_model_onnx.output(0)def predict(self, datas):predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]return predict_dataclass YOLOv5:"""YOLOv5 object detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""self.infer_tool = infer_toolif self.infer_tool == 'openvino':# 构建openvino推理引擎self.openvino = OpenvinoInference(onnx_model)self.ndtype = np.singleelse:# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.classes = CLASSES  # 加载模型类别self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)print('预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()if self.infer_tool == 'openvino':preds = self.openvino.predict(im)else:preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]print('推理时间:{:.3f}s'.format(time.time() - t2))# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)print('后处理时间:{:.3f}s'.format(time.time() - t3))return boxes# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""# (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6_1.0的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度scorex = preds  # outputs: predictions (1, 8400*3, 85)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# 绘框def draw_and_visualize(self, im, bboxes, video_writer, vis=False, save=False, is_track=False):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 6], n is number of bboxes.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles if not is_track:for (*box, conf, cls_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color_palette[int(cls_)], 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)else:for (*box, conf, id_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),(0, 0, 255), 1, cv2.LINE_AA)cv2.putText(im, f'{id_}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(1)# Save videoif save:video_writer.write(im)class ByteTrackerONNX(object):def __init__(self, args):self.args = argsself.tracker = BYTETracker(args, frame_rate=30)def _tracker_update(self, dets, image):online_targets = []if dets is not None:online_targets = self.tracker.update(dets[:, :-1],[image.shape[0], image.shape[1]],[image.shape[0], image.shape[1]],)online_tlwhs = []online_ids = []online_scores = []for online_target in online_targets:tlwh = online_target.tlwhtrack_id = online_target.track_idvertical = tlwh[2] / tlwh[3] > 1.6if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:online_tlwhs.append(tlwh)online_ids.append(track_id)online_scores.append(online_target.score)return online_tlwhs, online_ids, online_scoresdef inference(self, image, dets):"""Args: dets: 检测结果, [x1, y1, x2, y2, score]Returns: np.array([[x1, y1, x2, y2, conf, ids], ...])"""bboxes, ids, scores = self._tracker_update(dets, image)if len(bboxes) == 0:return []# Bounding boxes format change: tlwh -> xyxybboxes = np.array(bboxes)bboxes[..., [2, 3]] += bboxes[..., [0, 1]]bboxes = np.c_[bboxes, np.array(scores), np.array(ids)]return bboxesif __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default='yolov5s.onnx', help='Path to ONNX model')parser.add_argument('--source', type=str, default=str('test.mp4'), help='Path to input image')parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')parser.add_argument('--is_track', type=bool, default=True, help='是否启用跟踪')parser.add_argument('--track_thresh', type=float, default=0.5, help='tracking confidence threshold')parser.add_argument('--track_buffer', type=int, default=30, help='the frames for keep lost tracks, usually as same with FPS')parser.add_argument('--match_thresh', type=float, default=0.8, help='matching threshold for tracking')parser.add_argument('--min_box_area', type=float, default=10, help='filter out tiny boxes',)parser.add_argument('--mot20', dest='mot20', default=False, action='store_true', help='test mot20.',)args = parser.parse_args()# Build modelmodel = YOLOv5(args.model, args.imgsz, args.infer_tool)bytetrack = ByteTrackerONNX(args)# 读取视频,解析帧数宽高,保存视频cap = cv2.VideoCapture(args.source)width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)fps = cap.get(cv2.CAP_PROP_FPS)frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)video_writer = cv2.VideoWriter('demo.mp4', cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)))frame_id = 1while True:start_time = time.time()ret, img = cap.read()if not ret:break# Inferenceboxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)# trackif args.is_track:boxes = bytetrack.inference(img, boxes)# Visualizeif len(boxes) > 0:model.draw_and_visualize(copy.deepcopy(img), boxes, video_writer, vis=False, save=True, is_track=args.is_track)end_time = time.time() - start_timeprint('frame {}/{} (Total time: {:.2f} ms)'.format(frame_id, int(frame_count), end_time * 1000))frame_id += 1

结果显示如下:

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.04~0.05s(Openvino)
推理时间:0.08~0.09s(ONNXRuntime)
后处理时间:0.001s
ByteTrack时间:0.001~0.002s
注:640×640下。

lap+cython-bbox安装

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/735249.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux--文件类型与权限

Linux上一切皆文件; 蓝色的是目录文件 Linux不以文件的扩展名来区分文件类型,而是在文件属性中有一列专门记录文件类型. ls -l 可以查看 普通文件:.c .cpp .h .txt .pdf .xls (-) 目录文件:文件夹 (d) 管道文件:用于进程间通信的一种文件 (p) 链接文件:相当于W…

一图看懂Redis持久化机制!

持久化策略 Redis 提供了两种持久化策略: RDB (Redis Database Snapshot) 持久化机制,会在一段时间内生成指定时间点的数据集快照(snapshot) AOF(Append Only File) 持久化机制,记录 server 端收到的每一条写命令&am…

【开发工具】认识Git | 认识工作区、暂存区、版本库

文章目录 一、Git初识git本质上是一个版本控制器 二、Git的安装 - CentOS三、Git基本操作1. 创建Git本地仓库2. 配置Git3. 认识工作区、暂存区、版本库4. 版本回退5. 撤销修改情况1:对于工作区的代码,还没有add情况二:已经add ,但…

OB_GINS学习

OB_GINS学习 组合导航中的杆臂测量加速度计的零偏单位转换受到经纬度以及高程影响的正常重力位的计算公式大地坐标系(LBH)向空间直角坐标系(XYZ)的转换及其逆转换导航坐标系(n系)到地心地固坐标系&#xff…

【Prometheus】DataModel

数据模型 DataModel 指标 Metric metric 包含 metric name 和 metric label 格式&#xff1a; <metric name>{<label name><label value>, ...}例如&#xff1a;服务器 HTTP 接口 /messages 的总请求数 api_http_requests_total{method"POST",…

创建机器学习系统及一些思想

我们在创建一个优秀的神经网络需要一个漫长的循环过程。 先选择一个架构&#xff0c;再对我们的架构进行训练&#xff0c;最后诊断我们的误差&#xff0c;再回到我们重新的循环&#xff0c;直到我们的神经网络足够优秀。这就是机器学习迭代的过程。 误差分析&#xff1a; 我…

【嵌入式——QT】MDI应用程序设计

MDI应用程序就是在主窗口里创建多个同类型的MDI子窗口&#xff0c;这些MDI子窗口在主窗口里显示&#xff0c;并享受主窗口上的工具栏和菜单等操作功能&#xff0c;主窗口上的操作都针对当前活动的MDI子窗口进行。 图示 代码示例 QWMainWindow.h #ifndef QWMAINWINDOW_H …

悬浮工具球(仿 iphone 辅助触控)

悬浮工具球&#xff08;仿 iphone 辅助触控&#xff09; 兼容移动端 touch 事件点击元素以外位置收起解决鼠标抬起触发元素的点击事件问题 Demo Github <template><divref"FloatingBal"class"floating_ball":class"[dragging, isClick]&q…

MT笔试题

前言 某团硬件工程师的笔试题&#xff0c;个人感觉题目的价值还是很高的&#xff0c;分为选择题和编程题&#xff0c;选择题考的是嵌入式基础知识&#xff0c;编程题是两道算法题&#xff0c;一道为简单难度&#xff0c;一道为中等难度 目录 前言选择题编程题 选择题 C语言中变…

SpringBoot中RestTemplate 发送http请求

SpringBoot中RestTemplate 发送http请求 引入fastjson <!--fastjson--> <dependency><groupId>com.alibaba</groupId><artifactId>fastjson</artifactId><version>2.0.47</version> </dependency>创建配置文件 新建c…

C语言指针、数组学习记录

指针 指针是什么 数据在内存中存放的方式 声明一个变量int i 3;&#xff0c;那么在内存中就会分配一个大小为4字节&#xff08;因为int类型占4字节&#xff09;的内存空间给变量i&#xff0c;这块内存空间存放的数据就是变量i的值。 换句话说就是&#xff0c;在内存中给变…

空间复杂度(数据结构)

概念&#xff1a; 空间复杂度也是一个数学表达式&#xff0c;是对一个算法在运行过程中临时占用存储空间大小的量度 。 空间复杂度不是程序占用了多少bytes的空间&#xff0c;因为这个也没太大意义&#xff0c;所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复…

Grafana dashboards as ConfigMaps

文章目录 1. 简介2. 创建 configmaps3. grafana 界面查看 1. 简介 将 Grafana 仪表板存储为 Kubernetes ConfigMap 相比传统的通过 Grafana 界面导入仪表板有以下一些主要优点: 版本控制&#xff1a; ConfigMap 可以存储在版本控制系统(如Git)中,便于跟踪和管理仪表板的变更历…

人民网(人民号)如何发布文章新闻,人民网怎么投稿,附人民日报价格多少钱

最近有很多朋友问到一个问题&#xff0c;就是人民网如何发布文章新闻&#xff0c;以及人民网怎么投稿。作为一个专业的媒体发稿平台&#xff0c;媒介多多网为大家提供了一个非常好的解决方案。 首先&#xff0c;人民网作为我国权威媒体之一&#xff0c;其新闻发布渠道非常严谨…

python学习笔记------集合(set)

集合定义格式 基本语法&#xff1a; #定义集合字面量 {元素&#xff0c;元素&#xff0c;元素......&#xff0c;元素} #定义集合变量 变量名称{元素&#xff0c;元素&#xff0c;元素......&#xff0c;元素} #定义空集合 变量名称set() #定义集合字面量 {元素&#…

利用Amazon Bedrock畅玩Claude 3等多种领先模型,抢占AI高地(体验倒计时4小时)

快乐的时间总是短暂的&#xff0c;Claude 3 在亚马逊云科技上限时体验仅剩4小时&#xff0c;上次分享了入门级操作教程&#xff0c;本期给大家带来AWS Lambda Amazon Bedrock一起构建可以便捷使用的Claude 3接口 AWS Lambda AWS Lambda 是一项计算服务&#xff0c;可以运行您…

小白也能上手的爬虫项目:从零开始学习数据抓取

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通鸿蒙》 …

基于51单片机的定时器时钟设计[proteus仿真]

基于51单片机的定时器时钟设计[proteus仿真] 时钟设计检测系统这个题目算是课程设计和毕业设计中常见的题目了&#xff0c;本期是一个基于51单片机的定时器时钟设计 需要的源文件和程序的小伙伴可以关注公众号【阿目分享嵌入式】&#xff0c;赞赏任意文章 2&#xffe5;&…

Git分支管理(Git分支的原理、创建、切换、合并、删除分支)

系列文章目录 文章一&#xff1a;Git基本操作 文章目录 系列文章目录前言一、Git分支是什么二、Git分支的原理三、创建分支四、切换分支五、合并分支六、删除分支 前言 在上一篇文章中&#xff0c;我们学习了如何使用Git的一些基本操作&#xff0c;例如安装Git、创建本地仓库…

IDEA编译安卓源码TVBox

因为电视x受限&#xff0c;无法观看电视直播&#xff0c;为了春晚不受影响&#xff0c;于是网络一顿搜索&#xff0c;试过多个APP&#xff0c;偶尔找到这款开源的TVBox&#xff0c;寒假在家&#xff0c;随便拿来练练手&#xff0c;学习安卓APP的编写&#xff0c;此文做以记录&a…