挑战杯 基于设深度学习的人脸性别年龄识别系统

文章目录

  • 0 前言
  • 1 课题描述
  • 2 实现效果
  • 3 算法实现原理
    • 3.1 数据集
    • 3.2 深度学习识别算法
    • 3.3 特征提取主干网络
    • 3.4 总体实现流程
  • 4 具体实现
    • 4.1 预训练数据格式
    • 4.2 部分实现代码
  • 5 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习机器视觉的人脸性别年龄识别系统

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 课题描述

随着大数据与人工智能逐渐走入人们的生活,计算机视觉应用越发广泛。如医疗影像识别、无人驾驶车载视觉、通用物体识别、自然场景下的文本识别等,根据不同的应用场景,人脸研究方向可以分为人脸检测、身份识别、性别识别、年龄预测、种族识别、表情识别等。近年来,人脸身份识别技术发展迅猛,在生活应用中取得了较好的效果,也逐渐趋于成熟,而年龄识别与性别预测,仍然是生物特征识别研究领域中一项具有挑战性的课题。

课题意义

相比人脸性别属性而言,人脸年龄属性的研究更富有挑战性。主要有两点原因,首先每个人的年龄会随着身体健康状况、皮肤保养情况而表现得有所不同,即便是在同一年,表现年龄会随着个人状态的不同而改变,人类识别尚且具有较高难度。其次,可用的人脸年龄估计数据集比较少,不同年龄的数据标签收集不易,现有大多数的年龄数据集都是在不同的复杂环境下的照片、人脸图片存在光照变化较复杂、部分遮挡、图像模糊、姿态旋转角度较大等一系列问题,对人脸模型的鲁棒性产生了较大的影响。

2 实现效果

这里废话不多说,先放上大家最关心的实现效果:

输入图片:
在这里插入图片描述

识别结果:

在这里插入图片描述

或者实时检测
在这里插入图片描述
在这里插入图片描述

3 算法实现原理

3.1 数据集

学长收集的数据集:
该人脸数据库的图片来源于互联网的爬取,而非研究机构整理,一共含有13000多张人脸图像,在这个数据集中大约有1860张图片是成对出现的,即同一个人的2张不同照片,有助于人脸识别算法的研究,图像标签中标有人的身份信息,人脸坐标,关键点信息,可用于人脸检测和人脸识别的研究,此数据集是对人脸算法效果验证的权威数据集.

在这里插入图片描述
该数据集包含的人脸范围比较全面,欧亚人种都有。

3.2 深度学习识别算法

卷积神经网络是常见的深度学习架构,而在CNN出现之前,图像需要处理的数据量过大,导致成本很高,效率很低,图像在数字化的过程中很难保留原有的特征,导致图像处理的准确率不高。CNN的出现使得提取特征的能力变得更强,为更多优秀网络的研究提供了有力的支撑。CNN的核心思想是利用神经网络模拟人脑视觉神经系统,构造多个神经元并建立彼此之间的联系。不同的神经元进行分工,浅层神经元处理低纬度图像特征,深层神经元处理图像高级特征、语义信息等,CNN的网络结构主要由卷积层、BN层、激活层、池化层、全连接层、损失函数层构成,多个层协同工作实现了特征提取的功能,并通过特有的网络结构降低参数的数量级,防止过拟合,最终得到输出结果.

CNN传承了多层感知机的思想,并受到了生物神经科学的启发,通过卷积的运算模拟人类视觉皮层的“感受野”。不同于传统的前馈神经网络,卷积运算对图像的区域值进行加权求和,最终以神经元的形式进行输出。前馈神经网络对每一个输入的信号进行加权求和:

  • (a)图是前馈神经网络的连接方式
  • (b)图是CNN的连接方式。

在这里插入图片描述
cnn框架如下:
在这里插入图片描述

3.3 特征提取主干网络

在深度学习算法研究中,通用主干特征提取网络结合特定任务网络已经成为一种标准的设计模式。特征提取对于分类、识别、分割等任务都是至关重要的部分。下面介绍本文研究中用到的主干神经网络。

ResNet网络
ResNet是ILSVRC-2015的图像分类任务冠军,也是CVPR2016的最佳论文,目前应用十分广泛,ResNet的重要性在于将网络的训练深度延伸到了数百层,而且取得了非常好的效果。在ResNet出现之前,网络结构一般在20层左右,对于一般情况,网络结构越深,模型效果就会越好,但是研究人员发现加深网络反而会使结果变差。

在这里插入图片描述

人脸特征提取我这里选用ResNet,网络结构如下:
在这里插入图片描述

3.4 总体实现流程

在这里插入图片描述

4 具体实现

4.1 预训练数据格式

在这里插入图片描述

在这里插入图片描述

4.2 部分实现代码

训练部分代码:

from __future__ import absolute_importfrom __future__ import divisionfrom __future__ import print_functionfrom six.moves import xrangefrom datetime import datetimeimport timeimport osimport numpy as npimport tensorflow as tffrom data import distorted_inputsfrom model import select_modelimport jsonimport reLAMBDA = 0.01MOM = 0.9tf.app.flags.DEFINE_string('pre_checkpoint_path', '',"""If specified, restore this pretrained model """"""before beginning any training.""")tf.app.flags.DEFINE_string('train_dir', '/home/dpressel/dev/work/AgeGenderDeepLearning/Folds/tf/test_fold_is_0','Training directory')tf.app.flags.DEFINE_boolean('log_device_placement', False,"""Whether to log device placement.""")tf.app.flags.DEFINE_integer('num_preprocess_threads', 4,'Number of preprocessing threads')tf.app.flags.DEFINE_string('optim', 'Momentum','Optimizer')tf.app.flags.DEFINE_integer('image_size', 227,'Image size')tf.app.flags.DEFINE_float('eta', 0.01,'Learning rate')tf.app.flags.DEFINE_float('pdrop', 0.,'Dropout probability')tf.app.flags.DEFINE_integer('max_steps', 40000,'Number of iterations')tf.app.flags.DEFINE_integer('steps_per_decay', 10000,'Number of steps before learning rate decay')tf.app.flags.DEFINE_float('eta_decay_rate', 0.1,'Learning rate decay')tf.app.flags.DEFINE_integer('epochs', -1,'Number of epochs')tf.app.flags.DEFINE_integer('batch_size', 128,'Batch size')tf.app.flags.DEFINE_string('checkpoint', 'checkpoint','Checkpoint name')tf.app.flags.DEFINE_string('model_type', 'default','Type of convnet')tf.app.flags.DEFINE_string('pre_model','',#'./inception_v3.ckpt','checkpoint file')FLAGS = tf.app.flags.FLAGS# Every 5k steps cut learning rate in halfdef exponential_staircase_decay(at_step=10000, decay_rate=0.1):print('decay [%f] every [%d] steps' % (decay_rate, at_step))def _decay(lr, global_step):return tf.train.exponential_decay(lr, global_step,at_step, decay_rate, staircase=True)return _decaydef optimizer(optim, eta, loss_fn, at_step, decay_rate):global_step = tf.Variable(0, trainable=False)optz = optimif optim == 'Adadelta':optz = lambda lr: tf.train.AdadeltaOptimizer(lr, 0.95, 1e-6)lr_decay_fn = Noneelif optim == 'Momentum':optz = lambda lr: tf.train.MomentumOptimizer(lr, MOM)lr_decay_fn = exponential_staircase_decay(at_step, decay_rate)return tf.contrib.layers.optimize_loss(loss_fn, global_step, eta, optz, clip_gradients=4., learning_rate_decay_fn=lr_decay_fn)def loss(logits, labels):labels = tf.cast(labels, tf.int32)cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels, name='cross_entropy_per_example')cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')tf.add_to_collection('losses', cross_entropy_mean)losses = tf.get_collection('losses')regularization_losses = tf.get_collection(tf.GraphKeys.REGULARIZATION_LOSSES)total_loss = cross_entropy_mean + LAMBDA * sum(regularization_losses)tf.summary.scalar('tl (raw)', total_loss)#total_loss = tf.add_n(losses + regularization_losses, name='total_loss')loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')loss_averages_op = loss_averages.apply(losses + [total_loss])for l in losses + [total_loss]:tf.summary.scalar(l.op.name + ' (raw)', l)tf.summary.scalar(l.op.name, loss_averages.average(l))with tf.control_dependencies([loss_averages_op]):total_loss = tf.identity(total_loss)return total_lossdef main(argv=None):with tf.Graph().as_default():model_fn = select_model(FLAGS.model_type)# Open the metadata file and figure out nlabels, and size of epochinput_file = os.path.join(FLAGS.train_dir, 'md.json')print(input_file)with open(input_file, 'r') as f:md = json.load(f)images, labels, _ = distorted_inputs(FLAGS.train_dir, FLAGS.batch_size, FLAGS.image_size, FLAGS.num_preprocess_threads)logits = model_fn(md['nlabels'], images, 1-FLAGS.pdrop, True)total_loss = loss(logits, labels)train_op = optimizer(FLAGS.optim, FLAGS.eta, total_loss, FLAGS.steps_per_decay, FLAGS.eta_decay_rate)saver = tf.train.Saver(tf.global_variables())summary_op = tf.summary.merge_all()sess = tf.Session(config=tf.ConfigProto(log_device_placement=FLAGS.log_device_placement))tf.global_variables_initializer().run(session=sess)# This is total hackland, it only works to fine-tune iv3if FLAGS.pre_model:inception_variables = tf.get_collection(tf.GraphKeys.VARIABLES, scope="InceptionV3")restorer = tf.train.Saver(inception_variables)restorer.restore(sess, FLAGS.pre_model)if FLAGS.pre_checkpoint_path:if tf.gfile.Exists(FLAGS.pre_checkpoint_path) is True:print('Trying to restore checkpoint from %s' % FLAGS.pre_checkpoint_path)restorer = tf.train.Saver()tf.train.latest_checkpoint(FLAGS.pre_checkpoint_path)print('%s: Pre-trained model restored from %s' %(datetime.now(), FLAGS.pre_checkpoint_path))run_dir = '%s/run-%d' % (FLAGS.train_dir, os.getpid())checkpoint_path = '%s/%s' % (run_dir, FLAGS.checkpoint)if tf.gfile.Exists(run_dir) is False:print('Creating %s' % run_dir)tf.gfile.MakeDirs(run_dir)tf.train.write_graph(sess.graph_def, run_dir, 'model.pb', as_text=True)tf.train.start_queue_runners(sess=sess)summary_writer = tf.summary.FileWriter(run_dir, sess.graph)steps_per_train_epoch = int(md['train_counts'] / FLAGS.batch_size)num_steps = FLAGS.max_steps if FLAGS.epochs < 1 else FLAGS.epochs * steps_per_train_epochprint('Requested number of steps [%d]' % num_steps)for step in xrange(num_steps):start_time = time.time()_, loss_value = sess.run([train_op, total_loss])duration = time.time() - start_timeassert not np.isnan(loss_value), 'Model diverged with loss = NaN'if step % 10 == 0:num_examples_per_step = FLAGS.batch_sizeexamples_per_sec = num_examples_per_step / durationsec_per_batch = float(duration)format_str = ('%s: step %d, loss = %.3f (%.1f examples/sec; %.3f ' 'sec/batch)')print(format_str % (datetime.now(), step, loss_value,examples_per_sec, sec_per_batch))# Loss only actually evaluated every 100 steps?if step % 100 == 0:summary_str = sess.run(summary_op)summary_writer.add_summary(summary_str, step)if step % 1000 == 0 or (step + 1) == num_steps:saver.save(sess, checkpoint_path, global_step=step)if __name__ == '__main__':tf.app.run()

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/734482.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

浅谈2024 年 AI 辅助研发趋势!

目录 ​编辑 引言 一、AI辅助研发现状 1. 技术发展 2. 工具集成 3. 应用场景 二、AI辅助研发趋势 1. 更高的自动化程度 2. 更高的智能化程度 3. 更多的领域应用 4. 更高的重视度 三、结论 四. 完结散花 悟已往之不谏&#xff0c;知来者犹可追 创作不易&#xff…

(南京观海微电子)——I3C协议介绍

特点 两线制总线&#xff1a;I2C仅使用两条线——串行数据线&#xff08;SDA&#xff09;和串行时钟线&#xff08;SCL&#xff09;进行通信&#xff0c;有效降低了连接复杂性。多主多从设备支持&#xff1a;I2C支持多个主设备和多个从设备连接到同一总线上。每个设备都有唯一…

017-$route、$router

$route、$router 1、$route2、$router 1、$route $route 对象表示当前的路由信息&#xff0c;包含了当前 URL 解析得到的信息。包含当前的路径&#xff0c;参数&#xff0c;query对象等。 使用场景&#xff1a; 获取路由传参&#xff1a;this.$route.query、this.$route.par…

【布局:1688,阿里海外的新筹码?】1688重新布局跨境海外市场:第一步开放1688API数据采集接口

2023年底&#xff0c;阿里巴巴“古早”业务1688突然成为“重头戏”&#xff0c;尤其宣布正式布局跨境业务的消息&#xff0c;一度引发电商圈讨论。1688重新布局跨境海外市场&#xff1a;第一步开放1688API数据采集接口 2023年11月中旬&#xff0c;阿里财报分析师电话会上&…

VUE——v-cloak指令

VUE——v-cloak指令 属性选择器&#xff0c;可以控制vue实例化完成前的dom样式 功能&#xff1a;利用vue实例化后v-cloak属性会消失&#xff0c;设置其样式 官网介绍 没用前效果&#xff1a;当vue没渲染完前&#xff0c;界面效果会看到{{aboutCloak}}字符&#xff0c;影响用户…

UDP与TCP:了解这两种网络协议的不同之处

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

红包题第一弹

下载附件&#xff0c;发现有86个压缩包 现每个压缩包里面都有图片&#xff0c;010打开图片末尾都有base64部分&#xff0c;并且每个压缩包里面图片末尾的base64长度一样&#xff0c;刚好每一张的base64长度为100。猜测需要拼接起来然后解码 写个python脚本 import os import …

阿里云服务器9元1个月优惠价格表

阿里云服务器9元1个月优惠价格表&#xff0c;用不上9元&#xff0c;又降价了&#xff0c;只要5元。阿里云服务器一个月多少钱&#xff1f;最便宜5元1个月。阿里云轻量应用服务器2核2G3M配置61元一年&#xff0c;折合5元一个月&#xff0c;2核4G服务器30元3个月&#xff0c;2核2…

对象注入的几种方式

⭐ 作者&#xff1a;小胡_不糊涂 &#x1f331; 作者主页&#xff1a;小胡_不糊涂的个人主页 &#x1f4c0; 收录专栏&#xff1a;JavaEE &#x1f496; 持续更文&#xff0c;关注博主少走弯路&#xff0c;谢谢大家支持 &#x1f496; 注入对象 1. 属性注入2. 构造方法注入3. S…

微信小程序uniapp+django+python的酒店民宿预订系统ea9i3

Android的民宿预订系统设计的目的是为用户提供民宿客房、公告信息等方面的平台。 与PC端应用程序相比&#xff0c;Android的民宿预订系统的设计主要面向于民宿&#xff0c;旨在为管理员和用户、商家提供一个Android的民宿预订系统。用户可以通过Android及时查看民宿客房等。 An…

滑动窗算一下rms

clear clc close all fs20; width16; height16; t(1/fs:1/fs:200); signalsin(2*pi*0.1)rand(length(t),1)3/100*t; figure(1) set(gcf,units,centimeters,Position,[1,2height,width,height]) plot(t,signal) smoothed_avg_values smooth(signal, 20); % 这里的10是…

013 Linux_互斥

前言 本文将会向你介绍互斥的概念&#xff0c;如何加锁与解锁&#xff0c;互斥锁的底层原理是什么 线程ID及其地址空间布局 每个线程拥有独立的线程上下文&#xff1a;一个唯一的整数线程ID, 独立的栈和栈指针&#xff0c;程序计数器&#xff0c;通用的寄存器和条件码。 和其…

【C++】深度解剖多态

> 作者简介&#xff1a;დ旧言~&#xff0c;目前大二&#xff0c;现在学习Java&#xff0c;c&#xff0c;c&#xff0c;Python等 > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;了解什么是多态&#xff0c;熟练掌握多态的定义&a…

【SpringCloud】微服务重点解析

微服务重点解析 1. Spring Cloud 组件有哪些&#xff1f; 2. 服务注册和发现是什么意思&#xff1f;Spring Cloud 如何实现服务注册和发现的&#xff1f; 如果写过微服务项目&#xff0c;可以说做过的哪个微服务项目&#xff0c;使用了哪个注册中心&#xff0c;常见的有 eurek…

图片在div完全显示

效果图&#xff1a; html代码&#xff1a; <div class"container" style" display: flex;width: 550px;height: 180px;"><div class"box" style" color: red; background-color:blue; width: 50%;"></div><div …

30m二级分类土地利用数据Arcgis预处理及获取

本篇以武汉市为例&#xff0c;主要介绍将土地利用数据转换成武汉市内各区土地利用详情的过程以及分区统计每个区内各地类面积情况&#xff0c;后面还有制作过程中遇到的面积制表后数据过小的解决方法以及一些相关的知识点&#xff1a; 示例数据下载链接&#xff1a;数据下载链…

2024年阿里云服务器新用户购买一个月多少钱?

阿里云服务器一个月多少钱&#xff1f;最便宜5元1个月。阿里云轻量应用服务器2核2G3M配置61元一年&#xff0c;折合5元一个月&#xff0c;2核4G服务器30元3个月&#xff0c;2核2G3M带宽服务器99元12个月&#xff0c;轻量应用服务器2核4G4M带宽165元12个月&#xff0c;4核16G服务…

UnicodeDecodeError: ‘gbk‘和Error: Command ‘pip install ‘pycocotools>=2.0

今天重新弄YOLOv5的时候发现不能用了&#xff0c;刚开始给我报这个错误 subprocess.CalledProcessError: Command ‘pip install ‘pycocotools&#xff1e;2.0‘‘ returned non-zero exit statu 说这个包安装不了 根据他的指令pip install ‘pycocotools&#xff1e;2.0这个根…

哥德巴赫猜想

七十年代末八十年代初&#xff0c;哥德巴赫猜想在中国风靡一时&#xff0c;来源于徐迟的一篇同名报告文学。我还是小孩子&#xff0c;记得大人们叽里咕噜疯传。 “哇&#xff0c;不得了。陈景润证明了1&#xff0b;2&#xff1d;3&#xff0c;离1&#xff0b;1&#xff1d;2就…

misc30

rar解压得到 发现只有中间的图片可以分析&#xff0c;另外两个都有密码 那就先分析星空&#xff0c;属性里面发现 使用该密码可以解压doc文本&#xff0c;发现doc隐写 使用此密码&#xff08;Hello friend!)解压图片,得到一个二维码 扫码得到flag flag{welcome_to_ctfshow}