万用表数据导出变化曲线图——pycharm实现视频数据导出变化曲线图

万用表数据导出变化曲线图——pycharm实现视频数据导出变化曲线图

  • 一、效果展示
  • 二、环境配置
  • 三、代码构思
  • 四、代码展示
  • 五、代码、python环境包链接

一、效果展示

图1.1 效果展示
(左图:万用表视频截图;右图:表中数据变化曲线图)

二、环境配置

软件:PyCharm 2021.1.3 (Professional Edition)

python环境包:放在文章结尾文件链接,其中 .yaml 文件

三、代码构思

Created with Raphaël 2.3.0 Start 预备工作:拍摄一段万用表视频 预备工作:裁剪视频、读取视频每秒帧数 代码1:将视频按帧数截屏至某文件夹下 代码2:ocr 截屏文件夹下所有文件 代码3:正则表达式筛选截图中数字数据,并修正数据 代码4:绘图 End

四、代码展示

# functions.py
import cv2
import os
import glob# video to img
def extract_frames(video_path, output_folder, interval):cap = cv2.VideoCapture(video_path)frame_count = 0while cap.isOpened():ret, frame = cap.read()if not ret:breakif frame_count % interval == 0:output_path = f"{output_folder}/frame_{interval}_{frame_count // interval}.jpg"cv2.imwrite(output_path, frame)frame_count += 1cap.release()# 计数文件夹里的文件个数
def count_files_in_directory(directory):return len([f for f in os.listdir(directory) if os.path.isfile(os.path.join(directory, f))])# 删除文件夹下的图片
def del_imgs(folder_path):# 定义要删除的图片文件夹路径# 获取文件夹中所有图片文件的路径image_files = glob.glob(os.path.join(folder_path, '*.jpg')) + glob.glob(os.path.join(folder_path, '*.png'))# 遍历所有图片文件并删除for image_file in image_files:os.remove(image_file)
# img_to_plot.py
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.pyplot import MultipleLocatordef wyb_plot(Real_time_value, Maximum, Average, Minimum, fps, title, x_scale=2, y_scale=0.500):x = [i for i in range(len(Real_time_value))]plt.figure(dpi=200)x_major_locator = MultipleLocator(x_scale)# 把x轴的刻度间隔设置为2,并存在变量里y_major_locator = MultipleLocator(y_scale)# 把y轴的刻度间隔设置为0.0500,并存在变量里ax = plt.gca()# ax为两条坐标轴的实例ax.xaxis.set_major_locator(x_major_locator)# 把x轴的主刻度设置为1的倍数ax.yaxis.set_major_locator(y_major_locator)# 把y轴的主刻度设置为10的倍数# # 绘制柱状图# y = Real_time_value# plt.bar(x, y)# 绘制曲线图plt.plot(x, Real_time_value, label='Real_time_value')plt.plot(x, Maximum, label='Maximum')plt.plot(x, Average, label='Average')plt.plot(x, Minimum, label='Minimum')# 绘制曲线图,并标出最大值和最小值max_y = np.max(Real_time_value)min_y = np.min(Real_time_value)max_index = np.argmax(Real_time_value)min_index = np.argmin(Real_time_value)plt.annotate("(%s,%s)" % (x[max_index], max_y), xy=(x[max_index], max_y), xytext=(x[max_index], max_y + 0.5),textcoords='offset points',color='red')plt.savefig('wyb_plot.png')plt.annotate("(%s,%s)" % (x[min_index], min_y), xy=(x[min_index], min_y), xytext=(x[min_index], min_y - 0.5),textcoords='offset points',color='green')max_y = np.max(Maximum)min_y = np.min(Maximum)max_index = np.argmax(Maximum)min_index = np.argmin(Maximum)plt.annotate("(%s,%s)" % (x[max_index], max_y), xy=(x[max_index], max_y), xytext=(x[max_index], max_y + 0.5),textcoords='offset points',color='red')plt.savefig('wyb_plot.png')plt.annotate("(%s,%s)" % (x[min_index], min_y), xy=(x[min_index], min_y), xytext=(x[min_index], min_y - 0.5),textcoords='offset points',color='green')max_y = np.max(Average)min_y = np.min(Average)max_index = np.argmax(Average)min_index = np.argmin(Average)plt.annotate("(%s,%s)" % (x[max_index], max_y), xy=(x[max_index], max_y), xytext=(x[max_index], max_y + 0.5),textcoords='offset points',color='red')plt.savefig('wyb_plot.png')plt.annotate("(%s,%s)" % (x[min_index], min_y), xy=(x[min_index], min_y), xytext=(x[min_index], min_y - 0.5),textcoords='offset points',color='green')max_y = np.max(Minimum)min_y = np.min(Minimum)max_index = np.argmax(Average)min_index = np.argmin(Average)plt.annotate("(%s,%s)" % (x[max_index], max_y), xy=(x[max_index], max_y), xytext=(x[max_index], max_y + 0.5),textcoords='offset points',color='red')plt.savefig('wyb_plot.png')plt.annotate("(%s,%s)" % (x[min_index], min_y), xy=(x[min_index], min_y), xytext=(x[min_index], min_y - 0.5),textcoords='offset points',color='green')plt.xlabel('x/'+str(fps)+"fps")plt.ylabel('y/A')plt.title(title)plt.legend()plt.savefig('wyb_plot.png')# plt.show()
# main.py
import functions
import numpy as np
import ocr_imgs
import img_to_plot# 用户告知!/ Users informed!
print("Welcome to use wyb_project!")
print("Please place the video under the video folder")# 逻辑判断 / logical judgment
video_path_lj = int(input("Whether to set the video_path( default video_path = ./video/wybdata.mp4)(1/0): "))
interval_lj = int(input("Whether to set the interval( default screenshot / fps = 30)(1/0): "))video_path = "./video/wybdata.mp4"
output_folder = "./img"
# 输入 video name / Enter your video name
if video_path_lj:vi_name = input("Enter a video name(mind add suffix): ")video_path = "./video/" + vi_name# screenshot/fps
interval = 30  # 默认每隔30帧截取一张图片
if interval_lj:interval = int(input("screenshot / fps: "))# screenshot
extract_frames = functions.extract_frames
extract_frames(video_path, output_folder, interval)# 计数文件夹里的文件个数
directory = output_folder
count_files_in_directory = functions.count_files_in_directory
file_count = count_files_in_directory(directory) - 1# 定义要遍历的文件夹路径
folder_path = output_folder
# 每帧计数
frame_count = 0
# 数据数组
data_str = []
# 丢失数组
data_lost = []# ocr imgs
ocr_imgs = ocr_imgs.ocr_imgs(file_count, folder_path, interval, data_str, data_lost)data_float = [float(x) for x in data_str]# 绘图
# 定义万用表绘制的数据列表
Real_time_value = []
Maximum = []
Average = []
Minimum = []for i in range(len(data_float)):if i % 4 == 0:Real_time_value.append(data_float[i])Maximum.append(data_float[i + 1])Average.append(data_float[i + 2])Minimum.append(data_float[i + 3])fps = interval  # 30
Real_time_value = np.array(Real_time_value)
Maximum = np.array(Maximum)
Average = np.array(Average)
Minimum = np.array(Minimum)x_y_lj = int(input("Whether to set x and y axis scale( default x_scale=2, y_scale=0.500)(1/0): "))
if x_y_lj:x_scale = float(input("input x axis scale: "))y_scale = float(input("input y axis scale: "))title_lj = int(input("Whether to set the title of plot ( default \"wyb_plot\")(1/0): "))
if title_lj:title = input("enter a title for plot: ")title = "wyb_plot"
wyb_plot = img_to_plot.wyb_plot(Real_time_value, Maximum, Average, Minimum, fps, title, x_scale=2, y_scale=0.500)img_del_lj = int(input("Whether to delete imgs of imgs folder( default delete)(1/0): "))
if img_del_lj:folder_path = output_folderdel_imgs  = functions.del_imgs(folder_path)
# ocr_imgs.py
from cnocr import CnOcr
import redef ocr_imgs(file_count, folder_path, interval, data_str, data_lost):# 遍历文件夹文件(图片),进行文字识别for frame_count in range(file_count):img_fp = f"{folder_path}/frame_{interval}_{frame_count}.jpg"ocr = CnOcr()  # 所有参数都使用默认值out_list = ocr.ocr(img_fp)data_list = []for dict in out_list:text = dict.get('text')match = re.search(r'[0-9Oo][.,][0-9Oo][0-9Oo][0-9Oo][0-9Oo]|[Q][0-9Oo][0-9Oo][0-9Oo][0-9Oo]', text)  # 正则化匹配if match:result = match.group()# print(result)# with open('output.txt', 'a') as f:#     print(result, file=f)result = result.replace('O', '0').replace('o', '0').replace(',', '.')  # 修正数据data_list.append(result)# with open('output.txt', 'a') as f:#     print(result, file=f)if len(data_list) % 4 == 0:data_str += data_listelse:print("数据丢失," + "frame_" + str(interval) + "_" + str(frame_count) + ".jpg" + "未采集")data_lost.append(frame_count)# 手动采集图片数据 / manual captureman_cap = int(input("Whether manual collection(1/0): "))if man_cap:for frame in data_lost:data_ins = 0for i in range(4):if i == 0:data_ins = (input("rea: "))if i == 1:data_ins = (input("max: "))if i == 2:data_ins = (input("ave: "))if i == 3:data_ins = (input("min: "))data_str.insert((file_count - len(data_list) + 1) * 4 + i, data_ins)

五、代码、python环境包链接

wyb_project https://www.alipan.com/s/dKwQhvHpb4Z 提取码: 6mm1
点击链接保存,或者复制本段内容,打开「阿里云盘」APP ,无需下载极速在线查看,视频原画倍速播放。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/733767.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Springboot整合Mybaits启动过程

Springboot整合Mybaits启动过程 1.前言2.MybatisAutoConfiguration3.SqlSessionFactoryBean3.1 XMLConfigBuilder.parse()3.1.1 XMLMapperBuilder.parse()3.1.1.1 XMLStatementBuilder.parse() 4.SqlSession4.1 Executor 1.前言 直接加载mybatis配置文件,然后创建S…

Oracle 数据库sysaux表空间

导读 Oracle数据库中的SYSAUX表空间是一个特殊的表空间,它是在Oracle数据库10g版本中引入的。SYSAUX表空间用于存储数据库的辅助系统数据和附加组件数据,旨在减轻System表空间的负担,使得数据库管理更加高效。在本文中,我们将深入…

Matlab|【EI复现】电动汽车集群并网的分布式鲁棒优化调度模型

目录 1 内容简介 2 关键知识点 2.1 三类电动汽车模型 3 程序结果 4 下载链接 1 内容简介 电动汽车的数据模型种类繁多,但是用到比较高阶数学方法的并不多,本次分享的程序是下图所示的文章。 采用分布鲁棒优化模型,用到鲁棒对等转换&…

贪心区间问题(区间选点)

题目 给定 N 个闭区间 [ai,bi],请你在数轴上选择尽量少的点,使得每个区间内至少包含一个选出的点。 输出选择的点的最小数量。 位于区间端点上的点也算作区间内。 输入格式 第一行包含整数 N,表示区间数。 接下来 N 行,每行…

开发指南002-前后端信息交互规范-请求类

请求类由org.qlm.io.vo.RequestInfo定义://1.0 Schema(description "平台-请求包版本标识 用于版本兼容") private String version;Schema(description "平台-请求者") private String consumer;//请求者 标识发出请求的系统Schema(descripti…

MyBatis3源码深度解析(七)JDBC单连接事务

文章目录 前言2.7 JDBC单连接事务2.7.1 事务的开启与提交2.7.2 事务隔离级别2.7.2.1 并发访问问题(1)脏读(2)不可重复读(3)幻读 2.7.2.2 事务隔离级别(1)TRANSACTION_NONE&#xff1…

BJFU|计算机网络期末复习考前速记

整理了一些重要名词的定义与概念,适合在考前几个小时过几次加深印象,可以更好应对选填与简答的题型。 互联网的定义:广义观点-远程信息处理进一步达到资源共享;资源共享观点-以相互共享资源的方式互联起来的自治计算机系统的集合…

百度信息流

计划: 流量选择 - 四个维度: 百度信息流 ; 整合了百度APP、WAP、PC各频道信息流和内容详情页的流量资源,广告和信息流内容资讯穿插展现;适合所有产品呢 好看视频; 汇集海量优质的视频内容,通过智能推荐算法为用户推送最适合的视频广告,视频广告在列表页有声…

【故障分类】基于注意力机制的卷积神经网络结合双向长短记忆神经网络CNN-BiLSTM-attention实现数据分类附matlab代码

摘要: 本文详细介绍了一种基于注意力机制的卷积神经网络(CNN)结合双向长短记忆神经网络(BiLSTM)实现数据分类的方法,并给出了详细的Matlab实现代码。本文首先概述了CNN、BiLSTM和注意力机制的基本原理,然后阐述了整体网络结构的设计思路&…

ChatGPT 串接到 Discord - 团队协作好助理

ChatGPT 串接到 Discord - 团队协作好助理 ChatGPT 是由 OpenAI 开发的一个强大的语言模型,本篇文章教你如何串接 Discord Bot ,协助团队在工作上更加高效并促进沟通与协作。使 ChatGPT 发挥出最大的功效,进一步提升工作效率和团队协作能力。…

Redis 内存的优化

目录 前言 Redis 的内存碎片问题 判断Redis 内存碎片 如何清理内存碎片? 前言 我想讲一下怎么提高Redis 内存的利用率,redis 的数据是保存在内存中。对内存的利用率低,意味着存的数据很少,并不意味着就没有内存了&#xff0c…

【解读】OWASP大语言模型应用程序十大风险

OWASP大型语言模型应用程序前十名项目旨在教育开发人员、设计师、架构师、经理和组织在部署和管理大型语言模型(LLM)时的潜在安全风险。该项目提供了LLM应用程序中常见的十大最关键漏洞的列表,强调了它们的潜在影响、易利用性和在现实应用程序…

利用华为CodeArts持续交付项目演示流程

软件开发生产线(CodeArts)是面向开发者提供的一站式云端平台,即开即用,随时随地在云端交付软件全生命周期,覆盖需求下发、代码提交、代码检查、代码编译、验证、部署、发布,打通软件交付的完整路径&#xf…

力扣---腐烂的橘子

题目&#xff1a; bfs思路&#xff1a; 感觉bfs还是很容易想到的&#xff0c;首先定义一个双端队列&#xff08;队列也是可以的~&#xff09;&#xff0c;如果值为2&#xff0c;则入队列&#xff0c;我这里将队列中的元素定义为pair<int,int>。第一个int记录在数组中的位…

3.8IO作业

1&#xff1a;编写链表&#xff0c;链表里面随便搞点数据 使用 fprintf 将链表中所有的数据&#xff0c;保存到文件中 使用 fscanf 读取文件中的数据&#xff0c;写入链表中&#xff0c;实现&#xff0c;当按 ctrl c的时候&#xff0c;保存链表 #include <stdio.h> #in…

day15_集合_ArrayList

今日内容 零、 复习昨日 一、集合框架体系 二、Collection 三、泛型 四、迭代 五、List(ArrayList、LinkedList) 零、 复习昨日 日期解析的方法签名(字符串–>日期) Date parse(String s) 日期格式化的方法签名(日期–>字符串) String format(Date date) 运行时异常有哪些…

19、电源管理入门之微内核中的电源管理

目录 1. QNX电源管理框架 2. QNX客户端API库 3. QNX代码分析 4. Fuchsia中的电源管理 5. Minix中的电源管理 6. Harmony OS中的电源管理 之前介绍的电源管理机制基本都是在Linux中实现的,可以看到很复杂,各种框架,明明一个操作非要转来转去,而且在内核里面实现,跟内…

【HarmonyOS】ArkTS-联合类型

目录 联合类型实例 联合类型 联合类型是一种灵活的数据类型&#xff0c;它修饰的变量可以存储不同类型的数据。 语法&#xff1a;let 变量: 类型1 | 类型2 | 类型3 值 基于联合类型&#xff0c;变量可存不同类型数据 实例 // 需求&#xff1a;定义一个变量&#xff0c;存放…

Spring web开发(入门)

1、我们在执行程序时&#xff0c;运行的需要是这个界面 2、简单的web接口&#xff08;127.0.0.1表示本机IP&#xff09; package com.example.demo;import org.springframework.web.bind.annotation.RequestMapping; import org.springframework.web.bind.annotation.RestCont…

srlua打包(Lua 5.4.6)

资源 Lua - Joe DFs Builds 或者在文章附加资源下载。 使用方法 在当前文件夹打开文件夹&#xff0c;使用cmd。srglue.exe srlua.exe in.lua out.exe 或 srglue srlua.exe in.lua out.exe in.lua&#xff1a;指用进行打包的lua文件。out.exe&#xff1a;指输出的exe文件的…