消息中间件面试题-参考回答

面试官:RabbitMQ-如何保证消息不丢失

候选人

嗯!我们当时MYSQLRedis的数据双写一致性就是采用RabbitMQ实现同步 的,这里面就要求了消息的高可用性,我们要保证消息的不丢失。主要从三 个层面考虑

第一个是开启生产者确认机制,确保生产者的消息能到达队列,如果报错可 以先记录到日志中,再去修复数据

第二个是开启持久化功能,确保消息未消费前在队列中不会丢失,其中的交 换机、队列、和消息都要做持久化

第三个是开启消费者确认机制为auto,由spring确认消息处理成功后完成   ack,当然也需要设置一定的重试次数,我们当时设置了3次,如果重试3 还没有收到消息,就将失败后的消息投递到异常交换机,交由人工处理

面试官RabbitMQ消息的重复消费问题如何解决的

候选人

嗯,这个我们还真遇到过,是这样的,我们当时消费者是设置了自动确认机 制,当服务还没来得及给MQ确认的时候,服务宕机了,导致服务重启之

后,又消费了一次消息。这样就重复消费了

因为我们当时处理的支付(订单|业务唯一标),它有一个业务的唯一标  识,我们再处理消息时,先到数据库查询一下,这个数据是否存在,如果不 存在,说明没有处理过,这个时候就可以正常处理这个消息了。如果已经存 在这个数据了,就说明消息重复消费了,我们就不需要再消费了

面试官:那你还知道其他的解决方案吗?

候选人

嗯,我想想~

 

其实这个就是典型的幂等的问题,比如, redis分布式锁、数据库的锁都是可 以的

面试官RabbitMQ中死信交换机 ? RabbitMQ延迟队列有了解过嘛)

候选人

嗯!了解过!

我们当时的xx项目有一个xx业务,需要用到延迟队列,其中就是使用 RabbitMQ来实现的。

延迟队列就是用到了死信交换机和TTL(消息存活时间)实现的。

如果消息超时未消费就会变成死信,在RabbitMQ中如果消息成为死信,队列 可以绑定一个死信交换机,在死信交换机上可以绑定其他队列,在我们发消 息的时候可以按照需求指定TTL的时间,这样就实现了延迟队列的功能了。

我记得RabbitMQ还有一种方式可以实现延迟队列,在RabbitMQ中安装一个  死信插件,这样更方便一些,我们只需要在声明交互机的时候,指定这个就 是死信交换机,然后在发送消息的时候直接指定超时时间就行了,相对于死 信交换机+TTL要省略了一些步骤

面试官:如果有100万消息堆积在MQ ,如何解决 ?

候选人

我在实际的开发中,没遇到过这种情况,不过,如果发生了堆积的问题,解 决方案也所有很多的

第一:提高消费者的消费能力 ,可以使用多线程消费任务

第二:增加更多消费者,提高消费速度

使用工作队列模式, 设置多个消费者消费消费同一个队列中的消息

第三:扩大队列容积,提高堆积上限

可以使用RabbitMQ惰性队列,惰性队列的好处主要是

接收到消息后直接存入磁盘而非内存

消费者要消费消息时才会从磁盘中读取并加载到内存

 

支持数百万条的消息存储

面试官RabbitMQ的高可用机制有了解过嘛

候选人

嗯,熟悉的~

我们当时项目在生产环境下,使用的集群,当时搭建是镜像模式集群,使用 3台机器。

镜像队列结构是一主多从,所有操作都是主节点完成,然后同步给镜像节

点,如果主节点宕机后,镜像节点会替代成新的主节点,不过在主从同步完 成前,主节点就已经宕机,可能出现数据丢失

面试官:那出现丢数据怎么解决呢?

候选人

我们可以采用仲裁队列,与镜像队列一样,都是主从模式,支持主从数据同 步,主从同步基于Raft协议,强一致。

并且使用起来也非常简单,不需要额外的配置,在声明队列的时候只要指定 这个是仲裁队列即可

面试官Kafka是如何保证消息不丢失

候选人

嗯,这个保证机制很多,在发送消息到消费者接收消息,在每个阶段都有可 能会丢失消息,所以我们解决的话也是从多个方面考虑

第一个是生产者发送消息的时候,可以使用异步回调发送,如果消息发送失 败,我们可以通过回调获取失败后的消息信息,可以考虑重试或记录日志, 后边再做补偿都是可以的。同时在生产者这边还可以设置消息重试,有的时 候是由于网络抖动的原因导致发送不成功,就可以使用重试机制来解决

第二个在broker中消息有可能会丢失,我们可以通过kafka的复制机制来确保 消息不丢失,在生产者发送消息的时候,可以设置一个acks,就是确认机

制。我们可以设置参数为all,这样的话,当生产者发送消息到了分区之后, 不仅仅只在leader分区保存确认,在follwer分区也会保存确认,只有当所有 的副本都保存确认以后才算是成功发送了消息,所以,这样设置就很大程度 了保证了消息不会在broker丢失

 

第三个有可能是在消费者端丢失消息, kafka费消息都是按照offset进行标 记消费的,消费者默认是自动按期提交已经消费的偏移量,默认是每隔5s 交一次,如果出现重平衡的情况,可能会重复消费或丢失数据。我们一般都 会禁用掉自动提价偏移量,改为手动提交,当消费成功以后再报告给broker

消费的位置,这样就可以避免消息丢失和重复消费了

面试官Kafka中消息的重复消费问题如何解决的

候选人

kafka消费消息都是按照offset进行标记消费的,消费者默认是自动按期提交 已经消费的偏移量,默认是每隔5s提交一次,如果出现重平衡的情况,可能 会重复消费或丢失数据。我们一般都会禁用掉自动提价偏移量,改为手动提 交,当消费成功以后再报告给broker消费的位置,这样就可以避免消息丢失 和重复消费了

为了消息的幂等,我们也可以设置唯一主键来进行区分,或者是加锁,数据 库的锁,或者是redis分布式锁,都能解决幂等的问题

面试官Kafka是如何保证消费的顺序性

候选人

kafka默认存储和消费消息,是不能保证顺序性的,因为一个topic数据可能  存储在不同的分区中,每个分区都有一个按照顺序的存储的偏移量,如果消 费者关联了多个分区不能保证顺序性

如果有这样的需求的话,我们是可以解决的,把消息都存储同一个分区下就 行了,有两种方式都可以进行设置,第一个是发送消息时指定分区号,第二 个是发送消息时按照相同的业务设置相同的key,因为默认情况下分区也是  通过keyhashcode值来选择分区的, hash值如果一样的话,分区肯定也是  一样的

面试官Kafka的高可用机制有了解过嘛

候选人

嗯,主要是有两个层面,第一个是集群,第二个是提供了复制机制

 

kafka集群指的是由多个broker实例组成,即使某一台宕机,也不耽误其他 broker继续对外提供服务

复制机制是可以保证kafka的高可用的, 一个topic有多个分区,每个分区有  多个副本,有一个leader,其余的是follower副本存储在不同的broker中; 所有的分区副本的内容是都是相同的,如果leader发生故障时,会自动将其 中一个follower提升为leader,保证了系统的容错性、高可用性

面试官:解释一下复制机制中的ISR

候选人

ISR的意思是in-sync replica,就是需要同步复制保存的follower

其中分区副本有很多的follower,分为了两类, 一个是ISR,与leader副本同 步保存数据,另外一个普通的副本,是异步同步数据,当leader挂掉之后, 会优先从ISR副本列表中选取一个作为leader,因为ISR是同步保存数据,数 据更加的完整一些,所以优先选择ISR副本列表

面试官Kafka数据清理机制了解过嘛

候选人

嗯,了解过~~

Kafkatopic的数据存储在分区上,分区如果文件过大会分段存储segment

每个分段都在磁盘上以索引(xxxx.index)和日志文件(xxxx.log)的形式存储,

这样分段的好处是,第一能够减少单个文件内容的大小,查找数据方便,第 二方便kafka进行日志清理。

kafka中提供了两个日志的清理策略:

第一,根据消息的保留时间,当消息保存的时间超过了指定的时间,就会触 发清理,默认是168小时(7天)

第二是根据topic存储的数据大小,当topic所占的日志文件大小大于一定的阈 值,则开始删除最久的消息。这个默认是关闭的

这两个策略都可以通过kafkabroker中的配置文件进行设置

面试官Kafka中实现高性能的设计有了解过嘛

 

候选人

Kafka 高性能,是多方面协同的结果,包括宏观架构、分布式存储、 ISR 数据 同步、以及高效的利用磁盘、操作系统特性等。主要体现有这么几点:

消息分区:不受单台服务器的限制,可以不受限的处理更多的数据

顺序读写:磁盘顺序读写,提升读写效率

页缓存:把磁盘中的数据缓存到内存中,把对磁盘的访问变为对内存的访问

零拷贝:减少上下文切换及数据拷贝

消息压缩:减少磁盘IO和网络IO

分批发送:将消息打包批量发送,减少网络开销

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/732806.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

学习SVN

学习SVN 摘要1.简介2.下载安装3.SVN生命周期4.SVN Server搭建5.SVN Client使用6.git与SVN的区别 SVN 官网 Github SVN 源码 摘要 本篇博客对SVN的基础使用进行总结,以便加深理解和记忆 1.简介 SVN是Apache Subversion的缩写,是一个开源的源码版本控制…

java-ssm-jsp-基于ssm的宝文理学生社团管理系统

java-ssm-jsp-基于ssm的宝文理学生社团管理系统 获取源码——》公主号:计算机专业毕设大全

应对高并发的软件架构之道

在去年年终总结的时候,我提出了这样的困惑,究竟什么是真正的技术能力,是对于各种底层技术的钻研吗?钻研是好事,但实践下来,深入钻研并不在实际工作中有用,且钻研的越深,忘得越快&…

AIGC安全研究简述(附资料下载)

2023 AIGC技术实践及展望资料合集(29份).zip 2023 AIGC大型语言模型(LLM)实例代码合集.zip 2023大模型与AIGC峰会(公开)PPT汇总(25份).zip AIGC的安全研究是一个复杂且重要的领域,涉及多个关键…

Leetcode : 1137. 高度检查器

学校打算为全体学生拍一张年度纪念照。根据要求,学生需要按照 非递减 的高度顺序排成一行。 排序后的高度情况用整数数组 expected 表示,其中 expected[i] 是预计排在这一行中第 i 位的学生的高度(下标从 0 开始)。 给你一个整数…

一篇搞懂什么是LRU缓存|一篇搞懂LRU缓存的实现|LRUCache详解和实现

LRUCache 文章目录 LRUCache前言项目代码仓库什么时候会用到缓存(Cache)缓存满了,怎么办?什么是LRUCacheLRUCache的实现LRUCache对应的OJ题实现LRUCache对应的STL风格实现 前言 这里分享我的一些博客专栏,都是干货满满的。 手撕数据结构专栏…

什么是测试用例?如何设计?

在学习或者实际的测试工作中经常都会提到“测试用例”这个词,没错,测试用例是测试工作的核心,不管要做的是什么样的测试,在真正动手执行测试之前,我们都需要先根据软件需求来设计测试用例,之后再依据设计好…

动态加权平衡损失:深度神经网络的类不平衡学习和置信度校准

系列文章目录 文章目录 系列文章目录前言一、研究目的二、研究方法创新点处理类不平衡的大多数方法交叉熵损失函数Brier Score 三、DWB Loss总结 前言 Dynamically Weighted Balanced Loss: ClassImbalanced Learning and Confidence Calibration of Deep Neural Networks 下载…

2024年3月10日 十二生肖 今日运势

小运播报:2024年3月10日,星期日,农历二月初一 (甲辰年丁卯月癸酉日),法定节假日。 红榜生肖:龙、牛、蛇 需要注意:鸡、狗、兔 喜神方位:东南方 财神方位:…

鸿蒙Harmony应用开发—ArkTS声明式开发(基础手势:Image)

Image为图片组件,常用于在应用中显示图片。Image支持加载PixelMap、ResourceStr和DrawableDescriptor类型的数据源,支持png、jpg、jpeg、bmp、svg、webp和gif类型的图片格式。 说明: 该组件从API Version 7开始支持。后续版本如有新增内容&am…

作业 字符数组-统计和加密

字串中数字个数 描述 输入一行字符&#xff0c;统计出其中数字字符的个数。 输入 一行字符串&#xff0c;总长度不超过255。 输出 输出为1行&#xff0c;输出字符串里面数字字符的个数。 样例 #include <iostream> #include<string.h> using namespace std; int m…

AI绘画提示词案例(宠物

目录 1. 雪地猫猫&#xff1a;1.1 提示词&#xff1a;1.2 效果&#xff1a; 2. 趴地猫猫&#xff1a;2.1 提示词&#xff1a;2.2 效果&#xff1a; 3. 长城萨摩耶&#xff1a;3.1 提示词&#xff1a;3.2 效果&#xff1a; 4. 沙发猫猫&#xff1a;4.1 提示词&#xff1a;4.2 效…

[BT]小迪安全2023学习笔记(第21天:Web攻防-JWT)

第21天 JSON Web Token&#xff08;JWT&#xff09; JWT是一种紧凑且自包含的方式&#xff0c;用于在网络上安全地传输信息作为JSON对象。这些信息可以被验证和信任&#xff0c;因为它们是数字签名的。JWT通常用于身份验证和信息交换&#xff0c;下面是一个简化的JWT示例&…

Mysql:如何自定义导出表结构

为了方便将mysql表结构信息快速录入到word或Excel表格中&#xff0c;最终实现如下效果&#xff1a; 对于word,则可将Excel表格复制粘贴即可。 废话不多少&#xff0c;开干。 准备准建&#xff1a;navicat 或sqlyog 第一步&#xff1a;编辑sql&#xff0c;如&#xff1a; SE…

P5461 赦免战俘

来自-赦免战俘 - 洛谷 参考&#xff1a;题解 P5461 【赦免战俘】 - 洛谷专栏 代码&#xff1a; #include <iostream> #include <math.h> //利用pow()函数算次方 using namespace std; int a[1500][1500]; //因为最大每边顶多有2^101024人&#xff0c;所以1500…

HTML 01

1.html使用标签来表达 结束标签多一个/ <strong>文字内容</strong> <hr> 包裹内容就是双标签&#xff0c;换行等是单标签 浏览器中显示内容&#xff1a; 2.html的骨架是网页模板 <!DOCTYPE html> <html lang"en"> <head>&l…

Full GC的认识、预防和定位

(/≧▽≦)/~┴┴ 嗨~我叫小奥 ✨✨✨ &#x1f440;&#x1f440;&#x1f440; 个人博客&#xff1a;小奥的博客 &#x1f44d;&#x1f44d;&#x1f44d;&#xff1a;个人CSDN ⭐️⭐️⭐️&#xff1a;传送门 &#x1f379; 本人24应届生一枚&#xff0c;技术和水平有限&am…

【leetcode】429. N 叉树的层序遍历

题目描述 给定一个 N 叉树&#xff0c;返回其节点值的_层序遍历_。&#xff08;即从左到右&#xff0c;逐层遍历&#xff09;。 树的序列化输入是用层序遍历&#xff0c;每组子节点都由 null 值分隔&#xff08;参见示例&#xff09;。 示例 1&#xff1a; 输入&#xff1a;…

使用Python编写简单学生管理系统

学完python基础&#xff0c;把学过的知识运用起来做一个简单的学生管理系统 1、需求分析 需求&#xff1a;进入系统显示系统功能界面&#xff0c;功能如下&#xff1a; ① 添加学员信息 ② 删除学员信息 ③ 修改学员信息 ④ 查询学员信息(只查询某个学员) ⑤ 遍历所有学…

【蓝桥杯】蓝桥杯算法复习(一)

&#x1f600;大家好&#xff0c;我是白晨&#xff0c;一个不是很能熬夜&#x1f62b;&#xff0c;但是也想日更的人✈。如果喜欢这篇文章&#xff0c;点个赞&#x1f44d;&#xff0c;关注一下&#x1f440;白晨吧&#xff01;你的支持就是我最大的动力&#xff01;&#x1f4…