C++新特性:智能指针

一 、为什么需要智能指针

智能指针主要解决以下问题:
1)内存泄漏:内存手动释放,使用智能指针可以自动释放

2)共享所有权指针的传播和释放,比如多线程使用同一个对象时析构问题,例如同样的数据帧,但是业务A和业务B处理的逻辑不一样(都是只读)。可以用shared_ptr共享数据帧对象的所有权。线程A释放的时候,shared_ptr的引用计数count - 1,当为0的时候释放数据帧对象指针。
在这里插入图片描述

主要类型:
C++里面的四个智能指针: auto_ptrshared_ptrunique_ptrweak_ptr ,其中后三个是C++11支持,并且第一个已经被C++11弃用。

几个指针的特点:
1)unique_ptr:独占对象的所有权,由于没有引用计数,因此性能较好。
2)shared_ptr:共享对象的所有权,但性能略差。
3)weak_ptr:配合shared_ptr,解决循环引用的问题。

二、shared_ptr 共享的智能指针

2.1 内存模型

shared_ptr 内部包含两个指针,一个指向对象,另一个指向控制块(control block),控制块中包含一个引用计数(reference count), 一个弱计数(weak count)和其它一些数据。
在这里插入图片描述
例如对于

std::shared_ptr<int> p1(new int(1));
std::shared_ptr<int> p2 = p1;

在这里插入图片描述
std::shared_ptr使用引用计数,每一个shared_ptr的拷贝都指向相同的内存。再最后一个shared_ptr析构的时候,内存才会被释放。

shared_ptr共享被管理对象,同一时刻可以有多个shared_ptr拥有对象的所有权,当最后一个shared_ptr对象销毁时,被管理对象自动销毁。

2.2 常用函数

s.get()			// 返回shared_ptr中保存的裸指针;
s.reset(...)	// 重置shared_ptr
s.use_count() 	// 返回shared_ptr的强引用计数;
s.unique() 		// use_count()为1,返回true,否则返回false。

reset( )不带参数时,若智能指针s是唯一指向该对象的指针,则释放,并置空。若智能指针P不是唯一指向该对象的指针,则引用计数减少1,同时将P置空。

reset( )带参数时,若智能指针s是唯一指向对象的指针,则释放并指向新的对象。若P不是唯一的指针,则只减少引用计数,并指向新的对象。

2.3 初始化

通过构造函数、reset()make_shared方法来初始化shared_ptr,代码如下:

std::shared_ptr<int> p1(new int(1));
std::shared_ptr<int> p2 = p1;// 对于一个未初始化的智能指针,可以通过reset方法来初始化
// 当智能指针有值的时候调用reset会引起引用计数减1
std::shared_ptr<int> p3;
p3.reset(new int(1));
if(p3) {
cout << "p3 is not null";
}

我们应该优先使用make_shared来构造智能指针,因为他更高效。

auto sp1 = make_shared<int>(100);
或
shared_ptr<int> sp1 = make_shared<int>(100);
//相当于
shared_ptr<int> sp1(new shared_ptr<int> sp1(new int(100)););

这是因为为了节省一次内存分配,原来 shared_ptr<Foo> x(new Foo); 需要为 Foo 和 ref_count 各分配一次内存,现在用make_shared()的话,可以一次分配一块足够大的内存,供 Foo 和 ref_count 对象容身。
在这里插入图片描述

但是注意,不能将一个原始指针直接赋值给一个智能指针,例如,下面这种方法是错误的:

std::shared_ptr<int> p = new int(1);

正确的操作是通过构造函数和辅助方法来初始化

std::shared_ptr<int> p;
p1.reset(new int(1));

例子:

#include <iostream>
#include <memory>
using namespace std;int main()
{std::shared_ptr<int> p1;p1.reset(new int(1));std::shared_ptr<int> p2 = p1;// 引用计数此时应该是2cout << "p2.use_count() = " << p2.use_count() << endl;p1.reset();cout << "p1.reset()\n";// 引用计数此时应该是2cout << "p2.use_count()= " << p2.use_count() << endl;if (!p1){cout << "p1 is empty\n";}if (!p2){cout << "p2 is empty\n";}p2.reset();cout << "p2.reset()\n";cout << "p2.use_count()= " << p2.use_count() << endl;if (!p2){cout << "p2 is empty\n";}return 0;
}

结果是

p2.use_count() = 2
p1.reset()
p2.use_count()= 1
p1 is empty
p2.reset()
p2.use_count()= 0
p2 is empty

2.4 获取原始指针get

当需要获取原始指针时,可以通过get方法来返回原始指针,代码如下所示:

std::shared_ptr<int> ptr(new int(1));
int *p = ptr.get();

谨慎使用p.get()的返回值,因为很容易出错且难以排查。

p.get()的返回值就相当于一个裸指针的值,不合适的使用这个值,上述陷阱的所有错误都有可能发生,遵守以下几个约定:

1)不要保存p.get()的返回值 ,无论是保存为裸指针还是shared_ptr都是错误的。
若保存为裸指针不知什么时候就会变成空悬指针,若保存为shared_ptr则产生了独立指针

2)不要delete p.get()的返回值 ,会导致对一块内存delete两次的错误。

2.5 指定删除器

如果用shared_ptr管理非new对象或是没有析构函数的类时,应当为其传递合适的删除器。

#include <iostream>
#include <memory>
using namespace std;
void DeleteIntPtr(int *p) {cout << "call DeleteIntPtr" << endl;delete p;
}
int main()
{std::shared_ptr<int> p(new int(1), DeleteIntPtr);return 0;
}

当p的引用计数为0时,自动调用删除器DeleteIntPtr来释放对象的内存。删除器可以是一个lambda表达式,上面的写法可以改为:

std::shared_ptr<int> p(new int(1), [](int *p) {cout << "call lambda delete p" << endl;delete p;});

特别的是,当我们用shared_ptr管理动态数组时,需要指定删除器,因为shared_ptr的默认删除器不支持数组对象,代码如下所示:

std::shared_ptr<int> p(new int[10], [](int *p) { delete [] p;});

2.6 使用shared_ptr要注意的问题

1、不要用一个原始指针初始化多个shared_ptr
例如下面错误范例:

int *ptr = new int;
shared_ptr<int> p1(ptr);
shared_ptr<int> p2(ptr); // 逻辑错误

在这里插入图片描述

2、不要在函数实参中创建shared_ptr
对于下面的写法:

function(shared_ptr<int>(new int), g()); //有缺陷

因为C++的函数参数的计算顺序在不同的编译器不同的约定下可能是不一样的,一般是从右到左,但也可能从左到右,所以,可能的过程是先new int,然后调用g(),如果恰好g()发生异常,而shared_ptr还没有创建, 则int内存泄漏了,正确的写法应该是先创建智能指针,代码如下:

shared_ptr<int> p(new int);
function(p, g());

3、通过shared_from_this()返回this指针
不要将this指针作为shared_ptr返回出来,因为this指针本质上是一个裸指针,因此,这样可能会导致重复析构,看下面的例子。

#include <iostream>
#include <memory>
using namespace std;
class A
{
public:shared_ptr<A> GetSelf(){return shared_ptr<A>(this); // 不要这么做}A(){cout<<"Construction A"<<endl;}~A(){cout << "Destructor A:"<<this << endl;}
};
int main()
{shared_ptr<A> sp1(new A);shared_ptr<A> sp2 = sp1->GetSelf();cout<<"sp1.use_count() = "<<sp1.use_count()<<endl;cout<<"sp2.use_count() = "<<sp2.use_count()<<endl;return 0;
}

运行后调用了两次析构函数。

Construction A
sp1.use_count() = 1
sp2.use_count() = 1
Destructor A:0x1024000
Destructor A:0x1024000

在这个例子中,由于用同一个指针(this) 构造了两个智能指针sp1和sp2,而他们之间是没有任何关系的,即指向各自的 control block,但是指向对象都是new int。因此 在离开作用域之后this将会被构造的两个智能指针各自析构,导致重复析构的错误。

正确返回this的shared_ptr的做法是:让目标类通过std::enable_shared_from_this类,然后使用基类的成员函数shared_from_this()来返回this的shared_ptr,如下所示。

#include <iostream>
#include <memory>
using namespace std;class A: public std::enable_shared_from_this<A>
{
public:shared_ptr<A>GetSelf(){return shared_from_this(); //}A(){cout<<"Construction A"<<endl;}~A(){cout << "Destructor A" << endl;}
};
int main()
{shared_ptr<A> sp1(new A);shared_ptr<A> sp2 = sp1->GetSelf();  // okcout<<"sp1.use_count() = "<<sp1.use_count()<<endl;cout<<"sp2.use_count() = "<<sp2.use_count()<<endl;return 0;
}

结果是

Construction A
sp1.use_count() = 2
sp2.use_count() = 2
Destructor A

4、避免循环引用
循环引用会导致内存泄漏

#include <iostream>
#include <memory>
using namespace std;
class A;
class B;
class A {
public:std::shared_ptr<B> bptr;~A() {cout << "A is deleted" << endl;}
};
class B {
public:std::shared_ptr<A> aptr;~B() {cout << "B is deleted" << endl;}
};
int main()
{{std::shared_ptr<A> ap(new A);std::shared_ptr<B> bp(new B);ap->bptr = bp;bp->aptr = ap;}cout<< "main leave" << endl;  // 循环引用导致ap bp退出了作用域都没有析构return 0;
}

循环引用导致ap和bp的引用计数为2,在离开作用域之后,ap和bp的引用计数减为1,并不回减为0,导致两个指针都不会被析构,产生内存泄漏。

解决的办法是把A和B任何一个成员变量改为weak_ptr,具体方法见weak_ptr章节。

三、unique_ptr独占的智能指针

3.1 unique_ptr是一个独占型的智能指针

unique_ptr是一个独占型的智能指针,它不允许其他的智能指针共享其内部的指针,不允许通过赋值将
一个unique_ptr赋值给另一个unique_ptr。下面的错误示例。

unique_ptr<T> my_ptr(new T);
unique_ptr<T> my_other_ptr = my_ptr;  // 报错,不能复制

unique_ptr不允许复制,但可以通过函数返回给其他的unique_ptr,还可以通过·std::move·来转移到其他的unique_ptr,这样它本身就不再拥有原来指针的所有权了。例如

unique_ptr<T> my_ptr(new T); // 正确
unique_ptr<T> my_other_ptr = std::move(my_ptr); // 正确
unique_ptr<T> ptr = my_ptr;  // 报错,不能复制

std::make_shared是c++11的一部分,但std::make_unique不是。它是在c++14里加入标准库的。

auto upw1(std::make_unique<Widget>());   // with make func
std::unique_ptr<Widget> upw2(new Widget); // without make func

3.2 unique_ptr可以指向一个数组

std::unique_ptr<int []> ptr(new int[10]);
ptr[9] = 9;
std::shared_ptr<int []> ptr2(new int[10]);  // 这个是不合法的

3.3 unique_ptr需要确定删除器的类型

unique_ptr需要确定删除器的类型,所以不能像shared_ptr那样直接指定删除器

std::shared_ptr<int> ptr3(new int(1), [](int *p){delete  p;}); // 正确
std::unique_ptr<int> ptr4(new int(1), [](int *p){delete  p;}); // 错误

关于shared_ptrunique_ptr的使用场景是要根据实际应用需求来选择。

如果希望只有一个智能指针管理资源或者管理数组就用unique_ptr,如果希望多个智能指针管理同一个资源就用shared_ptr

四、weak_ptr弱引用的智能指针

shared_ptr虽然已经很好用了,但是有一点shared_ptr智能指针还是有内存泄露的情况,当两个对象相互
使用一个shared_ptr成员变量指向对方,会造成循环引用,使引用计数失效,从而导致内存泄漏。

weak_ptr 是一种不控制对象生命周期的智能指针, 它指向一个 shared_ptr 管理的对象. 进行该对象的内存管理的是那个强引用的shared_ptrweak_ptr 只是提供了对管理对象的一个访问手段。

weak_ptr 设计的目的是为配合 shared_ptr而引入的一种智能指针来协助 shared_ptr工作, 它只可以从一个 shared_ptr或另一个 weak_ptr 对象构造, 它的构造和析构不会引起引用记数的增加或减少。

4.1 基本用法

1)通过use_count()方法获取当前观察资源的引用计数,如下所示:

shared_ptr<int> sp(new int(10));
weak_ptr<int> wp(sp);
cout << wp.use_count() << endl;  //结果讲输出1

2)通过expired()方法判断所观察资源是否已经释放,如下所示

shared_ptr<int> sp(new int(10));
weak_ptr<int> wp(sp);
if(wp.expired())cout << "weak_ptr无效,资源已释放";
elsecout << "weak_ptr有效";

3)通过lock方法获取监视的shared_ptr

#include <iostream>
#include <memory>
using namespace std;std::weak_ptr<int> gw;
void f()
{auto spt = gw.lock();		if(gw.expired()) {cout << "gw无效,资源已释放";}else {cout << "gw有效, *spt = " << *spt << endl;}
}
int main()
{{auto sp  = std::make_shared<int>(42);gw = sp;f();}f();
return 0;
}

结果是

gw有效, *spt = 42
gw无效,资源已释放

4.2 返回this指针

shared_ptr章节中提到不能直接将this指针返回shared_ptr,需要通过派生std::enable_shared_from_this类,并通过其方法shared_from_this来返回指针.
原因是std::enable_shared_from_this类中有一个weak_ptr,这个weak_ptr用来观察this智能指针。调用shared_from_this()方法,会调用内部这个weak_ptrlock()方法,将所观察的shared_ptr返回

#include <iostream>
#include <memory>
using namespace std;class A: public std::enable_shared_from_this<A>
{
public:shared_ptr<A>GetSelf(){return shared_from_this(); //}A(){cout<<"Construction A"<<endl;}~A(){cout << "Destructor A" << endl;}
};
int main()
{shared_ptr<A> sp1(new A);shared_ptr<A> sp2 = sp1->GetSelf();  // okcout<<"sp1.use_count() = "<<sp1.use_count()<<endl;cout<<"sp2.use_count() = "<<sp2.use_count()<<endl;return 0;
}

结果是

Construction A
sp1.use_count() = 2
sp2.use_count() = 2
Destructor A

在外面创建A对象的智能指针和通过对象返回this的智能指针都是安全的,因为shared_from_this()是内部的weak_ptr调用lock()方法之后返回的智能指针,在离开作用域之后,sp1的引用计数减为0,A对象会被析构,不会出现A对象被析构两次的问题。

需要注意的是,获取自身智能指针的函数尽在shared_ptr的构造函数被调用之后才能使用,因为enable_shared_from_this内部的weak_ptr只有通过shared_ptr才能构造。

需要注意的是,获取自身智能指针的函数尽在shared_ptr的构造函数被调用之后才能使用,因为enable_shared_from_this内部的weak_ptr只有通过shared_ptr才能构造。

4.3 解决循环引用问题

shared_ptr章节提到智能指针循环引用的问题,因为智能指针的循环引用会导致内存泄漏,可以通过weak_ptr解决该问题,只要将A或B的任意一个成员变量改为weak_ptr

#include <iostream>
#include <memory>
using namespace std;
class A;
class B;
class A {
public:std::weak_ptr<B> bptr;~A() {cout << "A is deleted" << endl;}
};
class B {
public:std::shared_ptr<A> aptr;~B() {cout << "B is deleted" << endl;}
};
int main()
{{std::shared_ptr<A> ap(new A);cout<< "ap.use_count():"<< ap.use_count()<<endl;std::shared_ptr<B> bp(new B);cout<< "bp.use_count():"<<bp.use_count()<<endl;cout<<"===================="<<endl;ap->bptr = bp;cout<< "ap.use_count():"<<ap.use_count()<<endl;cout<< "bp.use_count():"<<bp.use_count()<<endl;cout<<"===================="<<endl;bp->aptr = ap;cout<< "ap.use_count():"<<ap.use_count()<<endl;cout<< "bp.use_count():"<<bp.use_count()<<endl;}cout<< "main leave" << endl;  // 循环引用导致ap bp退出了作用域都没有析构return 0;
}
ap.use_count():1
bp.use_count():1
====================
ap.use_count():1
bp.use_count():1
====================
ap.use_count():2
bp.use_count():1
B is deleted
A is deleted
main leave

这样在对B的成员赋值时,即执行ap->bptr = bp;;时,由于bptrweak_ptr,它并不会增加引用计数,所以bp的引用计数仍然会是1。
在离开作用域之后,bp的引用计数为减为0,B指针会被析构,析构后其内部的aptr的引用计数会被减为1,然后在离开作用域后ap引用计数又从1减为0,A对象也被析构,不会发生内存泄漏.

4.4 使用注意事项

1、weak_ptr在使用前需要检查合法性。

weak_ptr<int> wp;
{shared_ptr<int>  sp(new int(1));  //sp.use_count()==1wp = sp; //wp不会改变引用计数,所以sp.use_count()==1shared_ptr<int> sp_ok = wp.lock(); //wp没有重载->操作符。只能这样取所指向的对象
}
shared_ptr<int> sp_null = wp.lock(); //sp_null .use_count()==0;

因为上述代码中spsp_ok离开了作用域,其容纳的对象已经被释放了,得到了一个容纳NULL指针的sp_null对象。

在使用wp前需要调用wp.expired()函数判断一下。因为wp还仍旧存在,虽然引用计数等于0,仍有某处“全局”性的存储块保存着这个计数信息。直到最后一个weak_ptr对象被析构,这块“堆”存储块才能被回收。否则weak_ptr无法指导自己所容纳的那个指针资源的当前状态。

weak_ptr<int> wp;
shared_ptr<int> sp_ok;
{shared_ptr<int>  sp(new int(1));  //sp.use_count()==1wp = sp; //wp不会改变引用计数,所以sp.use_count()==1sp_ok = wp.lock(); //wp没有重载->操作符。只能这样取所指向的对象
}
// 在这个作用域结束后,sp 和其所管理的内存将会被销毁,因为 sp 的引用计数变为 0,触发内存释放。
if(wp.expired()) {cout << "shared_ptr is destroy" << endl;
} else {cout << "shared_ptr no destroy" << endl;
}
shared_ptr no destroy

在作用域内,创建了一个新的shared_ptr对象sp并将其所有权转交给wp,然后通过调用wp.lock()方法从wp中获取了shared_ptr的所有权。由于wp仍然有效,所以输出结果为"shared_ptr no destroy"。当作用域结束时,sp所管理的int对象会被销毁,但这并不影响wp的有效性。

五、为什么多线程读写 shared_ptr 要加锁?

为什么多线程读写 shared_ptr 要加锁?

本专栏知识点是通过<零声教育>的系统学习,进行梳理总结写下文章,对c/c++linux课程感兴趣的读者,可以点击链接,详细查看详细的服务器课程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/73263.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C#,《小白学程序》第十八课:随机数(Random)第五,方差及标准方差(标准差)的计算方法与代码

1 文本格式 /// <summary> /// 《小白学程序》第十八课&#xff1a;随机数&#xff08;Random&#xff09;第五&#xff0c;方差及标准方差&#xff08;标准差&#xff09;的计算方法与代码 /// 方差 SUM(&#xff08;Xi - X)^2 ) / n i0...n-1 X Average of X[i] ///…

《DevOps实践指南》- 读书笔记(二)

DevOps实践指南 Part 2 从何处开始5. 选择合适的价值流作为切入点5.1 绿地项目与棕地项目5.2 兼顾记录型系统和交互型系统5.3 从最乐于创新的团队开始5.4 扩大 DevOps 的范围5.5 小结 6. 理解、可视化和运用价值流6.1 确定创造客户价值所需的团队6.2 针对团队工作绘制价值流图6…

【广州华锐互动】电厂三维数字孪生大屏的功能和优势

在工业互联网的背景下&#xff0c;电厂三维数字孪生大屏系统正在逐渐成为电力行业的重要技术。通过创建电厂的虚拟模型&#xff0c;这个数字孪生系统可以实现对实际电厂的实时监控&#xff0c;预测维护需求&#xff0c;优化运营效率&#xff0c;甚至在某些情况下&#xff0c;能…

jmeter 线程组 Open Model Thread Group 阶梯式压测、高峰流量压测

简介 Open Model Thread Group 是5.4.1 版本中引入的一个实验性线程组&#xff0c;可以弹性模拟负载测试。例如设置多个线程模式&#xff0c;再根据这些线程模式调整不同的并发数、暂停时间。由于Open Model Thread Group 是一个实验性线程组&#xff0c;可能会存在一些限制和不…

2.9 PE结构:重建导入表结构

脱壳修复是指在进行加壳保护后的二进制程序脱壳操作后&#xff0c;由于加壳操作的不同&#xff0c;有些程序的导入表可能会受到影响&#xff0c;导致脱壳后程序无法正常运行。因此&#xff0c;需要进行修复操作&#xff0c;将脱壳前的导入表覆盖到脱壳后的程序中&#xff0c;以…

【群智能算法改进】一种改进的鹈鹕优化算法 IPOA算法[2]【Matlab代码#58】

文章目录 【获取资源请见文章第5节&#xff1a;资源获取】1. 原始POA算法2. 改进后的IPOA算法2.1 随机对立学习种群初始化2.2 动态权重系数2.3 透镜成像折射方向学习 3. 部分代码展示4. 仿真结果展示5. 资源获取 【获取资源请见文章第5节&#xff1a;资源获取】 1. 原始POA算法…

【JavaScript】在指定dom元素前面创建标签元素

一、基础操作过程 要在指定的DOM元素前面创建标签元素&#xff0c;有以下步骤&#xff1a; 获取指定的DOM元素&#xff1a;使用document.querySelector()或document.getElementById()等方法来获取指定的DOM元素。 const targetElement document.querySelector(#targetElement…

数字展厅有什么优势,一文了解数字展厅建设方案

引言&#xff1a; 在当今数字化风潮的席卷下&#xff0c;企业们正积极寻求创新的方式来吸引和互动他们的客户。数字展厅作为一种新型的虚拟宣传工具&#xff0c;已经开始引起广泛的关注。 一&#xff0e;什么是数字展厅&#xff1f; 数字展厅是一种基于虚拟现实&#xff08;V…

【前端】在Vue页面中引入其它vue页面 数据传输 相互调用方法等

主页面 home 从页面 headView 需求 在 home.vue 中引用 headView.Vue 方案: home.vue 代码: 只需要在home.vue 想要的地方添加 <headView></headView> <script>//聊天页面 import headView /view/headView.vueexport default {components: {headView},…

淘宝商品销量接口API更新(总销+精准月销API)

不少客户有获取淘宝商品销量的需求&#xff0c;淘宝商品销量接口主要用于以下业务场景。有不齐全的欢迎大家补充。 库存管理&#xff1a;商家可以通过接口获取到实时的销量信息&#xff0c;更好地进行库存管理。供应链计划&#xff1a;商家可以通过接口了解到商品的销售趋势&a…

Unity的UI面板基类

使用这个组件实现淡入淡出 public abstract class BasePanel : MonoBehaviour {//控制面板透明度 用于淡入淡出private CanvasGroup canvasGroup;//淡入淡出速度private float alphaSpeed 10;//隐藏还是显示public bool isShow false;//隐藏完毕后做的事private UnityAction …

企业电子招标采购系统源码Spring Boot + Mybatis + Redis + Layui + 前后端分离 构建企业电子招采平台之立项流程图

功能模块&#xff1a; 待办消息&#xff0c;招标公告&#xff0c;中标公告&#xff0c;信息发布 描述&#xff1a; 全过程数字化采购管理&#xff0c;打造从供应商管理到采购招投标、采购合同、采购执行的全过程数字化管理。通供应商门户具备内外协同的能力&#xff0c;为外部供…

Web安全——穷举爆破下篇(仅供学习)

Web安全 一、常见的端口服务穷举1、hydra 密码穷举工具的使用2、使用 hydra 穷举 ssh 服务3、使用 hydra 穷举 ftp 服务4、使用 hydra 穷举 mysql 服务5、使用 hydra 穷举 smb 服务6、使用 hydra 穷举 http 服务7、使用 hydra 穷举 pop3 服务8、使用 hydra 穷举 rdp 服务9、使用…

适用于基于晶圆键合的3D集成应用的高效单晶圆清洗

引言 不同的微电子工艺需要非常干净的表面以防止颗粒污染。其中&#xff0c;晶圆直接键合对颗粒清洁度的要求非常严格。直接晶圆键合包括通过简单地将两种材料的光滑且干净的表面接触来将两种材料连接在一起&#xff08;图1&#xff09;。在室温和压力下&#xff0c;两种材料表…

OMRON G9SP和NB触摸屏使用232口通讯

G9SP和NB触摸屏使用232口通讯 实验时间&#xff1a;2023/9/7 实验设备&#xff1a;G9SP-N20S、CP1W-CIF01&#xff08;232串口选减板&#xff09;、NB5Q-TW00B、XW2Z-200T&#xff08;串口线&#xff09;&#xff0c;CP1W-20EDT1&#xff0c;D4GS-N4T&#xff08;安全门开关&a…

【数据结构】二叉树的顺序结构实现及时间复杂度计算(二)

目录 一&#xff0c;二叉树的顺序结构实现 1&#xff0c;二叉树的顺序结构 2&#xff0c;堆的概念及结构 3&#xff0c;堆的接口实现 1&#xff0c;堆的创建 2&#xff0c;接口函数 3&#xff0c;初始化 4&#xff0c;销毁 5&#xff0c;是否增容 6&#xff0c;交换数据…

适用于Linux的Windows子系统(PHP搭建lmap、redis、swoole环境)

目录 前言 一、Windows安装Linux子系统 二、Ubuntu搭建PHP开发环境 1.PHP 安装 2.Apache2 安装 3.MySQL安装 4.Redis安装 5.Swoole安装 总结 前言 系列分为三章&#xff08;从安装到项目使用&#xff09;&#xff1a; 一、适用于Linux的Windows子系统&#xff08;系统安装步骤…

springboot整合mybatis实现增删改查(xml)--项目阶段1

目录 一、前言 二、创建项目 创建MySQL数据库和表 创建springboot项目 本文总体代码结构图预览 三、编写代码 &#xff08;一&#xff09;新建实体层属性类 &#xff08;二&#xff09;新建数据层mapper接口 &#xff08;三&#xff09;新建mapper的映射SQL&#xff08…

项目实战:ES的增加数据和查询数据

文章目录 背景在ES中增加数据新建索引删除索引 在ES中查询数据查询数据总数量 项目具体使用&#xff08;实战&#xff09;引入依赖方式一&#xff1a;使用配置类连接对应的es服务器创建配置类编写业务逻辑----根据关键字查询相关的聊天内容在ES中插入数据 总结提升 背景 最近需…

安达发|APS排程系统解决各类制造业难题方案

APS(Advanced Product Scheduling,先进产品计划)软件是一种基于计算机技术的生产计划和调度系统&#xff0c;广泛应用于汽车制造、电子制造、注塑、化工、纺织等行业。本文将详细介绍APS软件在这些行业的应用场景及其优势。 一、汽车制造 1. 零部件生产计划&#xff1a;APS软件…