AVL树
- 1. 概念
- 2. AVL节点的定义
- 3. AVL树插入
- 3.1 旋转
- 4.AVL树的验证
1. 概念
- AVL树是一种自平衡二叉搜索树。它的每个节点的左子树和右子树的高度差(平衡因子,我们这里按右子树高度减左子树高度)的绝对值不超过1。
- AVL的左子树和右子树都是AVL树。
- 比起二叉搜索树AVL树可以很好的优化二叉搜索树最坏的情况,使查询的效率达到O(log2 N)。
2. AVL节点的定义
和搜索二叉树节点相比,AVL树节点多了一个父节点和平衡因子(不是必要)需要维护。
template<class T>
typedef struct AVLTreeNode
{AVLTreeNode(const T& data):_pLeft(nullptr),_pRight(nullptr),_pParent(nullptr),_data(data),_bf(0){};//左节点、右节点、父节点AVLTreeNode<T>* _pLeft;AVLTreeNode<T>* _pRight;AVLTreeNode<T>* _pParent;T _data;//平衡因子int bf;
};
3. AVL树插入
和搜索二叉树的插入操作相比较,AVL树的插入需要多维护父节点和平衡因子。维护父节点比较简单,我们需要学习的是维护平衡因子。
当我们按照搜索二叉树的逻辑插入一个节点后,在插入这个节点之前父节点的平衡因子可能是-1/0/1这三种,如果该节点插入到父节点的左边需要将平衡因子减1,插入到右边则加1。所以插入之后平衡因子有这几种情况±1/0/±2。如果是±1,那么需要继续判断上面节点的平衡因子、如果是0,那么不需要判断了、如果是±2,那么就需要进行旋转操作。
3.1 旋转
我们先说结论:1、旋转之后节点所在子树的高度会回到插入之前。2、旋转不会对上面节点平衡因子产生影响。
- 右单旋
初始情况:
// 右单旋void RotateR(Node* pParent){Node* parent = pParent->_parent;//变成局部的根Node* pParentL = pParent->_left;Node* pParentR = pParentL->_right;if (pParent == _proot)_proot = pParentL;pParent->_left = pParentR;if (pParentR)pParentR->_parent = pParent;pParentL->_left = pParent;pParent->_parent = pParentL;pParentL->_parent = parent;//只需要修改pParent和pParentL的平衡因子pParent->_bf = 0;pParentL->_bf = 0;return;}
旋转之后情况
- 左单旋
初始情况:
// 左单旋void RotateL(Node* pParent){Node* parent = pParent->_parent;//变成局部的根Node* pParentR = pParent->_right;Node* pParentL = pParentR->_left;//如果pParnet为根,则要修改根if (pParent == _proot)_proot = pParentR;pParent->_right = pParentL;if (pParentL)pParentL->_parent = pParent;pParentR->_left = pParent;pParent->_parent = pParentR;pParentR->_parent = parent;//只需要修改pParent和pParentR的平衡因子pParent->_bf = 0;pParentR->_bf = 0;return;}
旋转之后的情况:
- 左右双旋
初始情况(插入可以插入到左边或右边,情况不同平衡因子也会不同):
// 左右双旋void RotateLR(Node* pParent){Node* pParentL = pParent->_left;Node* pParentLR = pParentL->_right;int bf = pParentLR->_bf;RotateL(pParentL);RotateR(pParent);if (bf == 0){pParent->_bf = 0;pParentL->_bf = 0;pParentLR->_bf = 0;}else if (bf == 1){pParentL->_bf = -1;pParentLR->_bf = 0;pParent->_bf = 0;}else if (bf == -1){pParentL->_bf = 0;pParent->_bf = 1;pParentLR->_bf = 0;}return;}
旋转之后的情况:
- 右左双旋转
初始情况:
// 右左双旋void RotateRL(Node* pParent){Node* pParnetR = pParent->_right;Node* pParentRL = pParnetR->_left;int bf = pParentRL->_bf;RotateR(pParnetR);RotateL(pParent);if (bf == 0){pParent->_bf = 0;pParnetR->_bf = 0;pParentRL->_bf = 0;}else if (bf == -1){pParent->_bf = 0;pParnetR->_bf = 1;pParentRL->_bf = 0;}else if (bf == 1){pParent->_bf = -1;pParnetR->_bf = 0;pParentRL->_bf = 0;}return;}
旋转之后的情况:
4.AVL树的验证
- 验证为二叉搜索树
中序遍历得到有序的序列就可以证明为二叉搜索树。 - 验证为平衡树
看平衡因子
bool _IsBalance(Node* root, int& height){if (root == nullptr){height = 0;return true;}int leftHeight = 0, rightHeight = 0;if (!_IsBalance(root->_left, leftHeight) || !_IsBalance(root->_right, rightHeight)){return false;}if (abs(rightHeight - leftHeight) >= 2){cout <<root->_kv.first<<"不平衡" << endl;return false;}if (rightHeight - leftHeight != root->_bf){cout << root->_kv.first <<"平衡因子异常" << endl;return false;}height = leftHeight > rightHeight ? leftHeight + 1 : rightHeight + 1;return true;}