K近邻
本案例使数据:官方数据
语言:python
工具:Jupyter
一、导包
# 导包
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load_wine
from sklearn.model_selection import train_test_split
import sklearn.metrics as sm
二、导入数据
# 导入数据
data = load_wine()
三、查看数据
# 查看数据,赋值
X, y = data.data, data.target
四、划分数据集
# 划分数据集
train_x, test_x, train_y, test_y = train_test_split(X, y, train_size=0.8, random_state=42)
五、创建模型
# 创建模型
model = KNeighborsClassifier(n_neighbors=3)
六、训练数据
# 训练数据
model.fit(train_x, train_y)KNeighborsClassifier(n_neighbors=3)
七、预测
# 预测
pred_test_y = model.predict(test_x)pred_test_yarray([2, 0, 2, 0, 1, 0, 1, 2, 0, 0, 2, 2, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1,2, 2, 1, 2, 1, 2, 1, 0, 0, 1, 2, 0, 0, 0])
八、模型评估
1.准确率
# 1.准确率
accuracy = sm.accuracy_score(test_y, pred_test_y)accuracy
0.8055555555555556
2、精确率
# 2.精确率
precision = sm.precision_score(test_y,pred_test_y, average='micro')precision
0.8055555555555556
3.召回率
# 3.召回率
recall = sm.recall_score(test_y,pred_test_y, average='macro')recall
0.7976190476190476
4.f1_score
# 4. f1_score
f1 = sm.f1_score(test_y, pred_test_y,average='macro')f1
0.7899877899877898
5.混淆矩阵
# 5. 混淆矩阵
sm.confusion_matrix(test_y,pred_test_y)
array([[12, 0, 2],[ 1, 11, 2],[ 1, 1, 6]], dtype=int64)
6.分类报告
# 6.分类报告
print(sm.classification_report(test_y,pred_test_y))precision recall f1-score support0 0.86 0.86 0.86 141 0.92 0.79 0.85 142 0.60 0.75 0.67 8accuracy 0.81 36macro avg 0.79 0.80 0.79 36
weighted avg 0.82 0.81 0.81 36