机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析

一、引言

机器学习在当今社会扮演着日益重要的角色,但黑盒模型的不可解释性限制了其应用范围。因此,可解释性机器学习成为研究热点,有助于提高模型的可信度和可接受性。本文旨在探讨随机森林和fastshap作为可视化模型解析工具的应用,以帮助解释机器学习模型的决策过程和关键特征。通过对这两种方法的深入研究,可以更好地理解模型背后的逻辑,为进一步的应用提供指导。

二、可解释性机器学习的概念

可解释性对于机器学习模型至关重要,因为它有助于用户理解模型的决策过程、预测结果以及特征的重要性。在许多关键应用领域,如医疗诊断、金融风险评估和自动驾驶等,模型的可解释性对于决策者和相关利益相关者至关重要。通过了解模型背后的逻辑和推理过程,可以提高对模型预测的信任度,并且能够更好地发现模型的局限性和潜在的偏差,从而更好地应对不确定性。

然而,现有的可解释性方法存在一些局限性,例如针对复杂模型的解释性较差、解释结果的一致性问题以及解释结果的可信度等。因此,需要进一步研究和发展新的方法来解决这些问题,以提高机器学习模型的可解释性和可信度。

接下来我们将介绍随机森林和FastSHAP作为可解释性机器学习的工具,探讨它们如何应对现有方法的局限性并提供更好的模型解释能力。

三、fastshap方法简介

3.1 FastSHAP的工作原理和优势

FastSHAP是一种用于解释机器学习模型的可解释性方法,它基于SHAP(Shapley Additive Explanations)值的概念,并通过优化算法提高了计算效率和可扩展性。

FastSHAP的工作原理是通过对特征重要性进行评估,解释模型对每个特征的贡献。它使用了Shapley值的概念,Shapley值是一种博弈论中用于衡量参与者对协作价值的贡献的方法。在FastSHAP中,Shapley值被用来衡量每个特征对预测结果的影响程度。

FastSHAP的优势有以下几点:

  • 「高效计算」:FastSHAP通过优化算法,有效地减少了计算SHAP值所需的时间和资源。相比传统的计算方法,FastSHAP能够在可接受的时间内解释复杂模型。
  • 「可扩展性」:FastSHAP适用于各种类型的机器学习模型,包括神经网络、随机森林等。它具有很好的通用性,可以广泛应用于不同领域和问题。
  • 「解释性准确性」:FastSHAP提供了对模型预测结果解释的准确性和可信度。通过计算每个特征的SHAP值,可以了解到每个特征对预测结果的贡献程度,从而更好地理解模型的决策过程和关键特征。

3.2 FastSHAP在可解释性中的作用

在可解释性机器学习中,FastSHAP发挥着重要的作用。它可以帮助我们更好地了解机器学习模型的内部机制,解释其预测结果,并为决策者提供有针对性的洞察和决策依据。通过使用FastSHAP,我们能够提高模型的可解释性和可信度,从而推动机器学习在实际应用中的更广泛使用。

四、可视化模型解析

4.1 随机森林和FastSHAP模型解析思路

  1. 训练随机森林模型:首先,通过训练数据训练一个随机森林模型。
  2. 解释模型预测过程:使用FastSHAP方法来解释随机森林模型的预测过程。FastSHAP可以计算每个特征对于每个预测结果的SHAP值,从而揭示模型对每个特征的重要性和影响程度。
  3. 可视化解释结果:利用可视化工具,将FastSHAP计算得到的SHAP值可视化展示。这样可以直观地展示每个特征对于模型预测结果的影响,帮助用户理解模型的决策过程和关键特征。

4.2 可视化工具解释随机森林模型的预测过程和特征重要性

利用可视化工具解释随机森林模型的预测过程和特征重要性的步骤如下:

  1. 计算SHAP值:使用FastSHAP方法计算随机森林模型对于测试数据集中每个样本的SHAP值,得到每个特征对于每个样本的影响程度。
  2. 可视化特征重要性:通过柱状图或热力图等方式,将各个特征的SHAP值可视化展示,以展示它们对于模型预测的重要性程度。
  3. 可视化预测过程:选取几个样本,展示它们的特征取值和对应的SHAP值,以说明模型是如何基于这些特征值进行预测的

五、实例演示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

   pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1"1 2 1 1 1 2 2 1 2 2 ...

age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg[,c(-1)]


# 划分训练集和测试集
set.seed(123)
train_indices <- sample(x = 1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.3 * nrow(data), replace = FALSE)

train_data <- data[train_indices, ]
test_data <- data[test_indices, ]
  • 「模型拟合」
library(randomForest)
rf <- randomForest(status~., data=train_data)
  • 「模型评估」
library(pROC)
# 获取模型预测的概率
pred_prob <- predict(rf, newdata = test_data, type = "class")

# 计算真阳性率和假阳性率
roc <- pROC::roc(test_data$status, pred_prob)

# 绘制ROC曲线
plot(roc, main = "ROC Curve", print.auc = TRUE, auc.polygon = TRUE, grid = TRUE, legacy.axes = TRUE,col="blue")

# 绘制特征重要性图
varImpPlot(rf)
  • 「shap分析」
library(fastshap)
shap <- explain(rf,X=train_data[,-10],nsim=10,
        pred_wrapper = function(model,newdata){
           predict(rf, newdata = newdata, type = "class")
        })

library(magrittr)
library(tidyverse)
shap_handle <- shap %>% as.data.frame() %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1),values_to="shap"# 长宽数据转换
shap_handle

data2 <- train_data %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1))

# 开始画图
shap_scale <- shap_handle %>% rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value)))

shap_scale <- shap_handle %>%
left_join(data2)%>%
rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value))) %>% sample_n(200)


ggplot(data=shap_scale, aes(x=shap, y=feature, color=value)) +
  geom_jitter(size=2, height=0.1, width=0) +
  scale_color_gradient(low="#FFCC33", high="#6600CC", breaks=c(01), labels=c("Low""High"), 
                       guide=guide_colorbar(barwidth=2, barheight=30), 
                       name="Feature value"
                       aesthetics = c("color")) +
  theme_bw()

结果展示:

# A tibble: 4,320 × 3
      id name       value
   <int> <chr>      <dbl>
 1     1 age     -0.00320
 2     1 meno    -0.00201
 3     1 size    -0.0711 
 4     1 grade   -0.0336 
 5     1 nodes   -0.126  
 6     1 pgr     -0.0308 
 7     1 er       0.0160 
 8     1 hormon   0.00211
 9     1 rfstime -0.189  
10     2 age      0.00561
# ℹ 4,310 more rows
# ℹ Use `print(n = ...)` to see more rows

六、结论

随机森林和FastSHAP在可解释性机器学习中具有重要作用,并有着许多优势和应用前景。以下是它们的优势以及在可解释性机器学习中的应用前景的总结:

  • 「随机森林的优势」

  1. 随机森林是一种集成学习方法,能够处理高维数据和大规模数据集,具有很好的准确性和鲁棒性。 随机森林可以输出特征重要性,帮助用户理解模型的决策过程和关键特征。
  2. 随机森林对于缺失值和异常值具有较好的容忍性,不需要对数据进行过多的预处理。
  • 「FastSHAP的优势」

  1. astSHAP通过优化算法提高了计算效率和可扩展性,适用于各种类型的机器学习模型。
  2. FastSHAP提供了对模型预测结果解释的准确性和可信度,帮助用户深入理解模型的决策过程。

在可解释性机器学习中,随机森林和FastSHAP的结合可以帮助用户更好地理解复杂模型的预测过程、特征重要性和决策依据,从而提高模型的可解释性和可信度。未来在可解释性机器学习领域的研究方向和发展趋势可能包括:

  1. 提高解释性方法的效率和可扩展性,使其能够适用于更复杂的模型和大规模数据集。
  2. 探索新的解释性方法,结合人类可理解的解释形式,使得解释更加直观和易于理解。
  3. 深入研究模型的不确定性估计和可信度评估,为决策者提供更全面的信息和决策支持。
  4. 推动可解释性机器学习在实际应用中的广泛应用,促进人工智能技术的可持续发展和应用落地。

随机森林和FastSHAP作为可解释性机器学习领域的重要工具和方法,将继续发挥重要作用,并在未来的研究和应用中持续展现出潜力和价值。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/731072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【生态适配】亚信安慧AntDB数据库与OpenCloudOS、TencentOS Server五款产品完成兼容互认

日前&#xff0c;亚信安慧AntDB数据库与OpenCloudOS8、OpenCloudOS9、TencentOS Server 2、TencentOS Server 3、TencentOS Server 4五款操作系统完成兼容互认。经过严格测试&#xff0c;亚信安慧AntDB数据库与这五款操作系统兼容良好&#xff0c;整体运行稳定。 图1&#xff1…

在Anaconda3的conda中创建虚拟环境下载opencv

opencv下载全流程 一、下载Anaconda 记得从官方网格站进行下载&#xff0c;会有一些慢 下载后进行配置 b站讲解视频&#xff08;非本人&#xff08;平台大神讲解&#xff09;&#xff09; 二、打开conda控制台 这里的两个都可以进行下载 通常我们受用anaconda prompt 三、…

数字人ai直播软件突破AI大模型技术,改变未来科技格局!

数字人AI直播软件在AI大模型技术上的突破&#xff0c;将不可避免地改变未来科技格局。这一突破让人们看到了AI技术的无限可能性&#xff0c;并为未来的科技发展打开了新的大门。 AI大模型技术是近年来人工智能领域的一个热点&#xff0c;它通过构建庞大、复杂的神经网络模型&a…

【AI视野·今日NLP 自然语言处理论文速览 第八十四期】Thu, 7 Mar 2024

AI视野今日CS.NLP 自然语言处理论文速览 Thu, 7 Mar 2024 Totally 52 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers The Heuristic Core: Understanding Subnetwork Generalization in Pretrained Language Models Authors Adith…

PostgreSQL容器安装

docker中的centos7中安装 选择对应的版本然后在容器中的centos7中执行下面命令 但是启动容器的时候需要注意 开启端口映射开启特权模式启动init进程 docker run -itd --name centos-postgresql -p 5433:5432 --privilegedtrue centos:centos7 /usr/sbin/init 启动然后进入后先…

JAVA实战开源项目:生活废品回收系统(Vue+SpringBoot)

目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容三、界面展示3.1 登录注册3.2 资源类型&资源品类模块3.3 回收机构模块3.4 资源求购/出售/交易单模块3.5 客服咨询模块 四、免责说明 一、摘要 1.1 项目介绍 生活废品回收系统是可持续发展的解决方案&#xff0c;旨在鼓…

CQBW(服务器部分)

计算检材 4-A.rar 的 MD5(128bit)校验值。&#xff08;答案格式: 字母大写&#xff09; 请写出镜像中系统&#xff08;用户名: root 密码: btLUN5Tb)的操作系统版本名称;&#xff08;答案格式: redhat; 小写、不带空格、特殊字符及版本号&#xff09; 也可以仿真来看 sed -i s…

HarmonyOS 数据持久化 关系型数据库之 初始化操作

上文 HarmonyOS 数据持久化之首选项 preferences 我们有说用户首选项 但它只能处理一些比较简单的数据类型结构 的持久化处理 如果是一些批量较大 结构较为复杂的数据结构 那么 首选项就无法满足了 我们就要选择 关系型数据库 通过 SQLite 组件实现的一种本地数据库&#xff0…

10 事务控制

文章目录 事务控制事务概述事务操作事务四大特性事务隔离级别 事务控制 事务概述 MySQL 事务主要用于处理操作量大&#xff0c;复杂度高的数据。比如说&#xff0c;在人员管理系统中&#xff0c;你删除一个人员&#xff0c;既需要删除人员的基本资料&#xff0c;也要删除和该…

校园生活信息平台:Java+Vue+MySQL全栈实践

✍✍计算机编程指导师 ⭐⭐个人介绍&#xff1a;自己非常喜欢研究技术问题&#xff01;专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目&#xff1a;有源码或者技术上的问题欢迎在评论区一起讨论交流&#xff01; ⚡⚡ Java实战 |…

Mint_21.3 drawing-area和goocanvas的FB笔记(五)

FreeBASIC SDL图形功能 SDL - Simple DirectMedia Layer 是完整的跨平台系统&#xff0c;有自己的窗口、直接捕获键盘、鼠标和游戏操纵杆的事件&#xff0c;直接操作音频和CDROM&#xff0c;在其surface上可使用gfx, openGL和direct3D绘图。Window3.0时代&#xff0c;各种应用…

Webpack常用配置及作用

一 、 二、 三、 四、 五、 六、 七、 八、

防御保护--IPSEC VPPN实验

实验拓扑图 实验背景&#xff1a;FW1和FW2是双机热备的状态。 实验要求&#xff1a;在FW5和FW3之间建立一条IPSEC通道&#xff0c;保证10.0.2.0/24网段可以正常访问到192.168.1.0/24 IPSEC VPPN实验配置&#xff08;由于是双机热备状态&#xff0c;所以FW1和FW2只需要配置FW1…

LLM 构建Data Muti-Agents 赋能数据分析平台的实践之①:数据采集

一、 概述 在推进产业数字化的过程中&#xff0c;数据作为最重要的资源是优化产业管控过程和提升产业数字化水平的基础一环&#xff0c;如何实现数据采集工作的便利化、高效化、智能化是降低数据分析体系运转成本以及推动数据价值挖掘体系的基础手段。随着数字化在产业端的推进…

UDP实现文件的发送、UDP实现全双工的聊天、TCP通信协议

我要成为嵌入式高手之3月7日Linux高编第十七天&#xff01;&#xff01; ———————————————————————————— 回顾 重要程序 1、UDP实现文件的发送 发端&#xff1a; #include "head.h"int main(void) {int sockfd 0;struct sockaddr_i…

LeetCode-102.题: 二叉树的层序遍历(原创)

【题目描述】 给你二叉树的根节点 root &#xff0c;返回其节点值的 层序遍历 。 &#xff08;即逐层地&#xff0c;从左到右访问所有节点&#xff09;。 示例 1&#xff1a; 输入&#xff1a;root [3,9,20,null,null,15,7] 输出&#xff1a;[[3],[9,20],[15,7]] 【题目链接…

Apache服务的搭建与配置

一、apache安装 systemctl stop firewalldsystemctl disable firewalldsetenforce 0yum -y install httpdsystemctl start httpdnetstat -ntlp | grep 80 二、认识主配置文件 # vim /etc/httpd/conf/httpd.conf ServerRoot "/etc/httpd" #定义工作目…

【CSP试题回顾】202109-1-数组推导

CSP-202109-1-数组推导 解题代码 #include<iostream> #include<vector> #include<algorithm> using namespace std;long long maxSum, minSum;int main() { int n;cin >> n;vector<int>B(n);for (auto& it : B){cin >> it;maxSum …

HNU-计算机网络-甘晴void学习感悟

前言 计算机网络其实我没太学懂&#xff0c; 仅从应试来说&#xff0c;考试成绩也不太好。 这也是为什么一直没有更新这一学科的学习感悟。 大三下还是有点闲&#xff0c;一周三天小长假&#xff0c;闲来无事还是给写了。 教材使用这本&#xff1a; 总领 期中考试 30% 期…

Vue 项目性能优化指南:提升应用速度与效率

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…