【FPGA】DDR3学习笔记(一)丨SDRAM原理详解

本篇文章包含的内容

  • 一、DDR3简介
    • 1.1 DDR3 SDRAM概述
    • 1.2 SDRAM的基础结构
  • 二、 SDRAM操作时序
    • 2.1 SDRAM操作指令
    • 2.2 模式寄存器(LOAD MODE REGISTER)
    • 2.3 SDRAM操作时序示例
      • 2.3.1 SDRAM初始化时序
      • 2.3.2 突发读时序
      • 2.3.3 随机读时序
      • 2.3.4 突发写时序
      • 2.3.5 随机写时序
      • 2.3.6 写-写时序
      • 2.3.7 写-读时序
      • 2.3.8 写后预充电时序
      • 2.3.9 打断突发写时序
      • 2.3.10 掩码操作
      • 2.3.11 刷新时序 Auto Refresh
      • 2.3.12 (休眠)刷新 Self Refresh


  笔者在这里使用的开发板是正点原子的达芬奇开发板,FPGA型号为XC7A35TFGG484-2。参考的课程是正点原子的课程手把手教你学达芬奇&达芬奇Pro之FPGA开发篇。本次实验的学习目的是通过熟悉DDR3的读取,为摄像头OV5640模块的使用做准备。


一、DDR3简介

1.1 DDR3 SDRAM概述

  DDR3 SDRAM(Double Data Rate 3 Synchronous Dynamic RAM),即第三代双倍速率同步动态随机存储器

  • 双倍速率:DDR3在时钟的上升沿和下降沿都可以读取数据;
  • 同步:DDR3读取数据是按时钟同步的,它的时钟频率与CPU前端总线的系统时钟频率相同,并且内部的命令发送与数据的传输都以它为基准;
  • 动态:DDR3中的数据无法掉电保存,同时如果想要保存数据,需要对数据进行周期性的刷新;
  • 随机存取:可以随机操作任意地址的数据,数据不是线性依次存储的,可以自由指定要读写的地址。

  在设计DDR设备时,需要关注SDRAM的芯片位宽物理Bank(Physical Bank,P-Bank) 之间的关系。

  • 芯片位宽:每一片SDRAM缓存芯片本身的位宽。
  • 物理Bank:传统内存系统为了保证CPU的正常工作,必须一次性传输完CPU在一个传输周期内需要的数据,控制内存与CPU之间数据交换的北桥芯片规定内存总线的数据位宽需要等同于CPU数据总线的位宽(CPU在一个传输周期内能够接受的数据容量),这个位宽就称为物理Back(Physical Bank)的位宽。

  当芯片位宽小于物理Bank时,就可以将多片SDRAM级联工作,以达到CPU存储数据的需求。

1.2 SDRAM的基础结构

在这里插入图片描述

  SDRAM中最核心的结构为逻辑Bank(Logical Bank,L-Bank),它是SDRAM内部空间划分的片区。每一个L-Bank都可以想象成一个巨大的“方格”矩阵,每一个方格中都可以存储和芯片位宽等长的数据,每一个方格都有对应的行编码和对应的列编码。

  理论上说,SDRAM中完全可以只制造一个巨大的Bank来存放所有的数据,但是经过行业迭代的发展,没有这样做的原因大致可以分为如下几点:

  1. 只有一个Bank相较于多个Bank在工艺上很难实现,即使实现,成本也很高;
  2. 只有一个Bank最大的问题在于读写速度较慢,甚至可能出现读写错误。由于SDRAM的操作逻辑是激活Bank中的对应行和对应列将数据读出,巨大的Bank会使得一次激活的时间变长,甚至在行切换时导致数据读写错误,采用多个Bank级联存储的方式可以大大缩短读取时间。

  SDRAM中存储数据是通过电容实现的。下面是一个bit的简单存储原理示意图。通过读取电容上的电量来判断该位为0还是1,并且需要不断刷新重复写入才能保证数据不丢失。
在这里插入图片描述
  SDRAM的内部结构可以大致如下图所示,这只是一个相对简单的SDRAM内部结构示意图。
在这里插入图片描述

二、 SDRAM操作时序

2.1 SDRAM操作指令

在这里插入图片描述
在这里插入图片描述
  理解SDRAM的工作时序之前有必要学习SDRAM的指令时序。为了提高数据读写效率,SDRAM没有独立的指令读取周期,而是通过不同控制线的组合实现不同的指令读取,不同指令对应控制线的真值表如上图所示。

tRCD
ACTIVE,执行Bank激活和行激活
WRITE/READ,执行Bank激活和列激活
预充电

特别需要注意的是:行激活ACTIVE指令后需要等待一段时间才能进行列激活,这一段时间称为 t R C D t_{RCD} tRCD,RCD(RAS to CAS Delay)称为行到列选择延迟时间。具体的延迟时间应参考器件手册。下面是一种情况下的时序示例:
在这里插入图片描述

  • 数据刷新(Refresh)模式选择CKE,时钟使能。从字面意义理解,它仅仅是时钟输入的使能控制线,但是它最主要的功能是选择SDRAM内部数据刷新时钟的来源。当CKE为高电平时,SDRAM正常工作,所有指令都有效,并且刷新计数器的时钟来自CPU,即执行Auto Refresh模式;当CKE为低电平时,SDRAM处于休眠模式,屏蔽所有指令和数据读写,刷新计数器的时钟来源为芯片内部时钟,即执行Self Refresh模式。存储体中的存储电容最长有效数据周期为64ms,所以刷新一行数据的最长时间是64ms/行数。当一个L-Bank中有4096行时,最长刷新时间为15.625μs。Auto Refresh模式下还可以通过配置A10选择对所有Bank进行自刷新还是对所有的Bank进行自刷新。
  • 预充电(Precharge):从原理上说,刷新和预充电对存储电容的操作是相同的,但是二者存在本质的区别:刷新是周期进行的,预充电是随着读写操作非周期进行的。由于读写和行选中操作会对存储电容中的电荷产生干扰,所以进行每一次读写操作后都需要重新对电容进行充(放)电,使0和1都回归到正常的电平。预充电操作需要在当前工作行操作结束,激活新行操作之间进行。充电可以手动执行,也可以配置芯片自动执行。Auto Perchage(AP) 在这里并不是指在结束读写操作后是否自动充电,而是定义了自动充电的范围,开启AP意味着每一次读写操作后都会对所有的Bank进行充电。虽然这样做会损耗一些芯片资源(对于没有操作过的行进行预充电意义不大),但是为了维护数据的稳定性作出这一点牺牲也未尝不可。AP是否开启通过地址线A10控制,当A10为高电平时开启AP。
  • 读写延迟(Delay):由于SDRAM内部芯片的关系,执行读写操作所用的时间并不完全相同。对于写操作,可以认为CPU将数据放在数据线上时SDRAM就完成了数据的写入;而对于读操作,执行完后需要等待两个时钟周期的时间数据才会正确出现在数据线上。
  • 突发(Burst)模式:只在同一行中对连续的数据单元进行读写操作的模式,连续传输所需要的数据长度定义为突发长度(Burst Length,BL)。这个突发操作可以被Burst Terminate指令打断。

  下面是一些操作指令的时序图,可以帮助理解。
在这里插入图片描述
在这里插入图片描述

2.2 模式寄存器(LOAD MODE REGISTER)

在这里插入图片描述
  通过配置SDRAM的模式寄存器(Mode Register),我们可以修改如下参数:

  • 突发长度(Burst Length,BL):突发操作时一次读取数据的单元数,通过M0~M2配置。

  • 突发模式(Burst Type):突发模式有两种,一种是连续模式(Sequential),一种是交替模式(Interleaved)。通过M3进行配置,一般情况下都使用连续模式。
    在这里插入图片描述

  • 行地址选择脉冲延迟(CAS Latency,CL):CAS(Column Address Strobe)即行选择信号(同时进行读写命令发送),如果发送的是读信号,那么从发送信号到开始接受数据需要等待CL个时钟周期。一般这个值取2,根据数据手册可以查到不同的时钟频率对应的延迟时间应该是多少,通过M4~M6配置。

  • 写突发模式选择(Write Burst Mode):在突发写入数据时,如果希望逐个数据依次写入,可以将M9配置为1,否则突发写入数据的BL将与突发读出数据的BL相同。

  • Op Mode和其他位:存储器厂商为了和其他产品兼容留下的配置位,对读写时序没有太大影响,可以忽略。

2.3 SDRAM操作时序示例

2.3.1 SDRAM初始化时序

在这里插入图片描述

2.3.2 突发读时序

在这里插入图片描述

2.3.3 随机读时序

在这里插入图片描述

2.3.4 突发写时序

在这里插入图片描述

2.3.5 随机写时序

在这里插入图片描述

2.3.6 写-写时序

  笔者的理解是突发写还未结束就可以发送一个新的写指令。
在这里插入图片描述

2.3.7 写-读时序

在这里插入图片描述

2.3.8 写后预充电时序

在这里插入图片描述

2.3.9 打断突发写时序

在这里插入图片描述

2.3.10 掩码操作

  下面是BL为4时的掩码操作时序示例。SDRAM写入数据是通过写入寄存器写入的,由DQM数据线控制写入数据是否被屏蔽。如下图所示,DQM为低电平时表示允许数据写入,DQM为高时为禁止数据写入。读指令时的时序类似,同样是在数据线上数据有效时操作DQM来控制数据是否正常输出,注意读数据时存在延时,这里不再列出时序图。
在这里插入图片描述

2.3.11 刷新时序 Auto Refresh

在这里插入图片描述

2.3.12 (休眠)刷新 Self Refresh

在这里插入图片描述


  原创笔记,码字不易,欢迎点赞,收藏~ 如有谬误敬请在评论区不吝告知,感激不尽!博主将持续更新有关嵌入式开发、FPGA方面的学习笔记。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/730850.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Python学习笔记-Flask实现简单的抽奖程序(增加图片显示)

1.创建static文件夹,存放图片文件 2.hero列表数据更改为要抽奖的图片名 3.html中可以编写python语句,遍历hero列表内容渲染到表格中 4.在点击随机抽取后,可以获得名称,然后使用img标签,将获取的名称拼接到路径中 3.初始页面,访问127.0.0.1:5000/index 4.点击随机抽取后 5.py…

【深入理解设计模式】享元设计模式

享元设计模式 概述 享元设计模式(Flyweight Design Pattern)是一种用于性能优化的设计模式,它通过共享尽可能多的相似对象来减少对象的创建,从而降低内存使用和提高性能。享元模式的核心思想是将对象的共享部分提取出来&#xff…

实用干货:分享4个冷门但非常实用的HTML属性

大家好,我是大澈! 本文约1100字,整篇阅读大约需要2分钟。 关注微信公众号:“程序员大澈”,免费加入问答群,一起交流技术难题与未来! 现在关注公众号,免费送你 ”前后端入行大礼包…

TensorRT是什么,有什么作用,如何使用

TensorRT 是由 NVIDIA 提供的一个高性能深度学习推理(inference)引擎。它专为生产环境中的部署而设计,用于提高在 NVIDIA GPU 上运行的深度学习模型的推理速度和效率。以下是关于 TensorRT 的详细介绍: TensorRT 是 NVIDIA 推出的…

freeRTOS20240308

1.总结任务的调度算法,把实现代码再写一下 2.总结任务的状态以及是怎么样进行转换的

Java集合面试题(day 02)

📑前言 本文主要是【JAVA】——Java集合面试题的文章,如果有什么需要改进的地方还请大佬指出⛺️ 🎬作者简介:大家好,我是听风与他🥇 ☁️博客首页:CSDN主页听风与他 🌄每日一句&am…

容器: string

引言: 为什么要有string类型, 就使用字符数组表示字符串不行吗? 原因: 使用字符数组描述文本信息, 无法确定开多大空间, 开多了浪费,开少了不够用使用string封装: 扩容机制:减少了空间的浪费各种接口:方便修改等操作 string的使用 容量相关 size:获取字符个数,不包含\0 (C语言…

从huggingface下载模型像本地加载但是UnicodeDecodeError

我自己是在Linux下出现了这个问题 原文:https://github.com/huggingface/transformers/issues/13674 The path for the AutoModel should be to a directory pointing to a pytorch_model.bin and to a config.json. Since you’re pointing to the .bin file dire…

无限debugger的几种处理方式

不少网站会在代码中加入‘debugger’,使你F12时一直卡在debugger,这种措施会让新手朋友束手无策。 js中创建debugger的方式有很多,基础的形式有: ①直接创建debugger debugger; ②通过eval创建debugger(在虚拟机中…

安全防御-第七次

在FW5和FW6之间建立一条IPSEC通道保证10.0.2.0/24网段可以正常访问到192.168.1.0/24 NAT: 安全策略: NAT: 安全策略: 修改服务器映射: 配置IPSEC:

物联网的商业模式洞察

大约在十年前(2014年11月),全球知名管理思想家、哈佛商学院教授迈克尔波特与PTC前首席执行官吉姆赫普尔曼,在《哈佛商业评论》上联合撰写了一篇备受赞誉的文章,题为《智能互联产品如何改变竞争》。在这篇文章中&#x…

零基础,学6个月嵌入式,能找到工作吗?

今天看到一个老铁问,他报了个班,学6个月,学完能找到工作吗? 我看了下他的学习内容,包含C语言、数据结构、系统编程、网络编程、STM32、RTOS、物联网通讯协议、Linux内核驱动,这是大纲,细节的课程…

AIOPS:Zabbix结合讯飞星火做自动化告警+邮件通知并基于人工智能提供解决方案

目前Zabbix官方已经提供Zabbix+ChatGPT的解决方案 ChatGPT一周年,你充分利用了吗?Zabbix+ChatGPT,轻松化解告警! 但是由于需要魔法等其他因素,比较不稳定,遂决定使用国内模型,这里我挑选的是讯飞星火,基于我之前的文档,在此基础上通过Zabbix的告警脚本实现调用AI模型…

Sora的核心技术预测

在ChatGPT火爆全网的一年后,OpenAI公司又一次大显身手:推出了全新的文生视频大模型Sora。直接输入文字提示词,即可直接生成长达60秒的视频。 “现实真的要不存在了。” 马斯克直接大呼:人类彻底完蛋了! 马斯克为什么…

面试题之——事务失效的八大情况

事务失效的八大情况 一、非public修饰的方法 Transactional注解只能在在public修饰的方法下使用。 /*** 私有方法上的注解,不生效(因私有方法Spring扫描不到该方法,所以无法生成代理)*/ Transactional private boolean test() …

每日学习总结20240308

每日总结 20240305 常用控件 QPushButton(按钮):用于触发操作或响应用户点击事件。QLabel(标签):用于显示文本或图像。QLineEdit(行编辑器):单行文本输入框&#xff0…

华为OD机试真题-测试用例执行计划

测试用例执行计划 题目描述: 某个产品当前迭代周期内有N个特性({F1,F2,...,FN})需要进行覆盖测试,每个特性都被评估了对应的优先级,特性使用其ID作为下标进行标识。 设计了M个测试用例({T1,T2,...,TM}),每个用例对应了一个覆盖特…

48、兰州大学、青海师范:专门用于深度CNNs的天阶斗技-ELA Local Attention

本文由兰州大学信息科学与工程学院、青海省物联网重点实验室、青海师范大学于2024年3.2日发表于ArXiv。为了解决现有的注意力模型在有效利用空间信息方面存在的限制和困难,提出了一种高效的局部注意力ELA模型。该方法通过分析坐标注意力的局限性,作者识别…

项目解决方案:多地5G蓄能电站的视频监控联网系统设计方案

目 录 一、前言 二、系统架构设计 1、系统架构设计说明 2、系统拓扑图 三、关键技术 1. 5G支持技术 2. 视频图像处理技术 3. 数据融合与分析技术 四、功能特点 1. 高效可靠 2. 实时监测 3. 远程控制 4. 故障预测 五、应用前景 一、前言 随着能源…

C++泛型实现搜索二叉树

文章目录 二叉搜索树查找插入删除实现应用性能分析 二叉搜索树 二叉搜索树(BST,Binary Search Tree)又称为二叉排序树,空树也算 二叉搜索树有如下性质 若左子树不为空,则左子树上所有节点值小于根节点若右子树不为空…