【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer

【Python】科研代码学习:三 PreTrainedModel, PretrainedConfig, PreTrainedTokenizer

  • 前言
  • Models : PreTrainedModel
    • PreTrainedModel 中重要的方法
  • tensorflow & pytorch 简单对比
  • Configuration : PretrainedConfig
    • PretrainedConfig 中重要的方法
  • Tokenizer : PreTrainedTokenizer
    • PreTrainedTokenizer 中重要的方法

前言

  • HF 官网API
    本文主要从官网API与源代码中学习调用HF的关键模组

Models : PreTrainedModel

  • HF 提供的基础模型类有 PreTrainedModel, TFPreTrainedModel, and FlaxPreTrainedModel
  • 这三者有什么区别呢
    PreTrainedModel 指的是用 torch 的框架
    在这里插入图片描述
    TFPreTrainedModel 指的是用 tensorflow 框架
    在这里插入图片描述
    FlaxPreTrainedModel 指的是用 flax 框架,是用 jax 做的
    在这里插入图片描述
    (哈哈,搜了好久都没搜到,去看源码导包瞬间明白了,也可能是我比较笨)
  • Transformers的大部分模型都会继承PretrainedModel基类。PretrainedModel主要负责管理模型的配置,模型的参数加载、下载和保存。
  • PretrainedModel继承自 nn.Module, ModuleUtilsMixin, GenerationMixin, PushToHubMixin, PeftAdapterMixin
    在初始化时需要提供给它一个 config: PretrainedConfig
  • 所以,我们可以视为它是所有模型的基类
    可以看到很多其他代码在判断模型类型时,一般写 model: Union[PreTrainedModel, nn.Module]

PreTrainedModel 中重要的方法

  • push_to_hub:将模型传到HF hub
from transformers import AutoModelmodel = AutoModel.from_pretrained("google-bert/bert-base-cased")# Push the model to your namespace with the name "my-finetuned-bert".
model.push_to_hub("my-finetuned-bert")# Push the model to an organization with the name "my-finetuned-bert".
model.push_to_hub("huggingface/my-finetuned-bert")
  • from_pretrained:根据config实例化预训练pytorch模型(Instantiate a pretrained pytorch model from a pre-trained model configuration.)
    默认使用评估模式 .eval()
    可以打开训练模式 .train()

    看下面的例子,可以从官方加载,也可以从本地模型参数加载。如果本地参数是tf的,转pytorch需要设置 from_tf=True,并且会慢些;本地参数是flax的话类似同理。
from transformers import BertConfig, BertModel# Download model and configuration from huggingface.co and cache.
model = BertModel.from_pretrained("google-bert/bert-base-uncased")
# Model was saved using *save_pretrained('./test/saved_model/')* (for example purposes, not runnable).
model = BertModel.from_pretrained("./test/saved_model/")
# Update configuration during loading.
model = BertModel.from_pretrained("google-bert/bert-base-uncased", output_attentions=True)
assert model.config.output_attentions == True
# Loading from a TF checkpoint file instead of a PyTorch model (slower, for example purposes, not runnable).
config = BertConfig.from_json_file("./tf_model/my_tf_model_config.json")
model = BertModel.from_pretrained("./tf_model/my_tf_checkpoint.ckpt.index", from_tf=True, config=config)
# Loading from a Flax checkpoint file instead of a PyTorch model (slower)
model = BertModel.from_pretrained("google-bert/bert-base-uncased", from_flax=True)

可以给 torch_dtype 设置数据类型。若不给,则默认为 torch.float16。也可以给 torch_dtype="auto"

  • get_input_embeddings:获得输入的词嵌入在这里插入图片描述
    对应还有 get_output_embeddings
  • init_weights:设置参数初始化
    如果需要自己调整参数初始化的,在 _init_weights_initialize_weights 中设置
  • save_pretrained:把模型和配置参数保存在文件夹中
    保存完后,便可以通过 from_pretrained 再次加载模型了
    在这里插入图片描述

tensorflow & pytorch 简单对比

  • 知乎:Tensorflow 到底比 Pytorch 好在哪里?
    下面截取了比较重要的图
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述
  • 里面还提到了一个内容叫做 Keras

Keras是一个由Python编写的开源人工神经网络库,可以作为Tensorflow、Microsoft-CNTK和Theano的高阶应用程序接口,进行深度学习模型的设计、调试、评估、应用和可视化

Configuration : PretrainedConfig

  • 刚才看了,对于 PretrainedModel 初始化提供的参数是 PretrainedConfig 类型的参数。
    它主要为不同的任务,提供了不同的重要参数
    HF官网:PretrainedConfig
  • 列一下对于NLP中比较重要的参数吧,所有的就看官方文档吧
返回信息
output_hidden_states (bool, optional, defaults to False) — Whether or not the model should return all hidden-states.
output_attentions (bool, optional, defaults to False) — Whether or not the model should returns all attentions.
return_dict (bool, optional, defaults to True) — Whether or not the model should return a ModelOutput instead of a plain tuple.
output_scores (bool, optional, defaults to False) — Whether the model should return the logits when used for generation.
return_dict_in_generate (bool, optional, defaults to False) — Whether the model should return a ModelOutput instead of a torch.LongTensor.序列生成
max_length (int, optional, defaults to 20) — Maximum length that will be used by default in the generate method of the model.
min_length (int, optional, defaults to 0) — Minimum length that will be used by default in the generate method of the model.
do_sample (bool, optional, defaults to False) — Flag that will be used by default in the generate method of the model. Whether or not to use sampling ; use greedy decoding otherwise.
num_beams (int, optional, defaults to 1) — Number of beams for beam search that will be used by default in the generate method of the model. 1 means no beam search.
diversity_penalty (float, optional, defaults to 0.0) — Value to control diversity for group beam search. that will be used by default in the generate method of the model. 0 means no diversity penalty. The higher the penalty, the more diverse are the outputs.
temperature (float, optional, defaults to 1.0) — The value used to module the next token probabilities that will be used by default in the generate method of the model. Must be strictly positive.
top_k (int, optional, defaults to 50) — Number of highest probability vocabulary tokens to keep for top-k-filtering that will be used by default in the generate method of the model.
top_p (float, optional, defaults to 1) — Value that will be used by default in the generate method of the model for top_p. If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.
epetition_penalty (float, optional, defaults to 1) — Parameter for repetition penalty that will be used by default in the generate method of the model. 1.0 means no penalty.
length_penalty (float, optional, defaults to 1) — Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log likelihood of the sequence (i.e. negative), length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences.
bad_words_ids (List[int], optional) — List of token ids that are not allowed to be generated that will be used by default in the generate method of the model. In order to get the tokens of the words that should not appear in the generated text, use tokenizer.encode(bad_word, add_prefix_space=True).tokenizer相关
bos_token_id (int, optional) — The id of the beginning-of-stream token.
pad_token_id (int, optional) — The id of the padding token.
eos_token_id (int, optional) — The id of the end-of-stream token.PyTorch相关
torch_dtype (str, optional) — The dtype of the weights. This attribute can be used to initialize the model to a non-default dtype (which is normally float32) and thus allow for optimal storage allocation. For example, if the saved model is float16, ideally we want to load it back using the minimal amount of memory needed to load float16 weights. Since the config object is stored in plain text, this attribute contains just the floating type string without the torch. prefix. For example, for torch.float16 `torch_dtype is the "float16" string.常见参数
vocab_size (int) — The number of tokens in the vocabulary, which is also the first dimension of the embeddings matrix (this attribute may be missing for models that don’t have a text modality like ViT).
hidden_size (int) — The hidden size of the model.
num_attention_heads (int) — The number of attention heads used in the multi-head attention layers of the model.
num_hidden_layers (int) — The number of blocks in the model.

PretrainedConfig 中重要的方法

  • push_to_hub:依然是上传到 HF hub
  • from_dict:把一个 dict 类型转到 PretrainedConfig 类型
  • from_json_file:把一个 json 文件转到 PretrainedConfig 类型,传入的是文件路径
  • to_dict:转成 dict 类型
  • to_json_file:保存到 json 文件
  • to_json_string:转成 json 字符串
  • from_pretrained:从预训练模型配置文件中直接获取配置
    可以是HF模型,也可以是本地模型,见下方例子
# We can't instantiate directly the base class *PretrainedConfig* so let's show the examples on a
# derived class: BertConfig
config = BertConfig.from_pretrained("google-bert/bert-base-uncased"
)  # Download configuration from huggingface.co and cache.
config = BertConfig.from_pretrained("./test/saved_model/"
)  # E.g. config (or model) was saved using *save_pretrained('./test/saved_model/')*
config = BertConfig.from_pretrained("./test/saved_model/my_configuration.json")
config = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False)
assert config.output_attentions == True
config, unused_kwargs = BertConfig.from_pretrained("google-bert/bert-base-uncased", output_attentions=True, foo=False, return_unused_kwargs=True
)
assert config.output_attentions == True
assert unused_kwargs == {"foo": False}
  • save_pretrained:把配置文件保存到文件夹中,方便下次 from_pretrained 直接读取

Tokenizer : PreTrainedTokenizer

  • HF官网:PreTrainedTokenizer
    Tokenizer 是用来把输入的字符串,转成 id 数组用的
    先来看一下其中相关的类的继承关系
    在这里插入图片描述
  • PreTrainedTokenizer 的初始化方法是直接给了 **kwargs
    调几个重要的列在下面,可以看到大部分都是设置一些token的含义。
bos_token (str or tokenizers.AddedToken, optional) — A special token representing the beginning of a sentence. Will be associated to self.bos_token and self.bos_token_id.
eos_token (str or tokenizers.AddedToken, optional) — A special token representing the end of a sentence. Will be associated to self.eos_token and self.eos_token_id.
unk_token (str or tokenizers.AddedToken, optional) — A special token representing an out-of-vocabulary token. Will be associated to self.unk_token and self.unk_token_id.
sep_token (str or tokenizers.AddedToken, optional) — A special token separating two different sentences in the same input (used by BERT for instance). Will be associated to self.sep_token and self.sep_token_id.
pad_token (str or tokenizers.AddedToken, optional) — A special token used to make arrays of tokens the same size for batching purpose. Will then be ignored by attention mechanisms or loss computation. Will be associated to self.pad_token and self.pad_token_id.
cls_token (str or tokenizers.AddedToken, optional) — A special token representing the class of the input (used by BERT for instance). Will be associated to self.cls_token and self.cls_token_id.
mask_token (str or tokenizers.AddedToken, optional) — A special token representing a masked token (used by masked-language modeling pretraining objectives, like BERT). Will be associated to self.mask_token and self.mask_token_id.

PreTrainedTokenizer 中重要的方法

  • add_tokens:添加一些新的token
    它强调了,添加新token需要确保 token 嵌入矩阵与tokenizer是匹配的,即多调用一下 resize_token_embeddings 方法
    在这里插入图片描述
# Let's see how to increase the vocabulary of Bert model and tokenizer
tokenizer = BertTokenizerFast.from_pretrained("google-bert/bert-base-uncased")
model = BertModel.from_pretrained("google-bert/bert-base-uncased")num_added_toks = tokenizer.add_tokens(["new_tok1", "my_new-tok2"])
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))
  • add_special_tokens:添加特殊tokens,比如之前的 eos,pad 等,与之前普通的tokens是不大一样的,但要确保该token不在词汇表里
# Let's see how to add a new classification token to GPT-2
tokenizer = GPT2Tokenizer.from_pretrained("openai-community/gpt2")
model = GPT2Model.from_pretrained("openai-community/gpt2")special_tokens_dict = {"cls_token": "<CLS>"}num_added_toks = tokenizer.add_special_tokens(special_tokens_dict)
print("We have added", num_added_toks, "tokens")
# Notice: resize_token_embeddings expect to receive the full size of the new vocabulary, i.e., the length of the tokenizer.
model.resize_token_embeddings(len(tokenizer))assert tokenizer.cls_token == "<CLS>"
  • encode, decode:字符串转id数组,id数组转字符串,即词嵌入
    encodeself.convert_tokens_to_ids(self.tokenize(text)) 等价
    decodeself.convert_tokens_to_string(self.convert_ids_to_tokens(token_ids)) 等价
  • tokenize:把字符串转成token序列,即分词 str → list[str]

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/730614.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java基础面试题(day 01)

&#x1f4d1;前言 本文主要是【Java】——Java基础面试题的文章&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是听风与他&#x1f947; ☁️博客首页&#xff1a;CSDN主页听风与他 &#x1f304;每日一句&am…

C++ 篇 数组

数组是含有多个数据项的数据结构&#xff0c;并且这些数据项都具有相同的数据类型。这些数据项称为数组的元素&#xff0c;我们可以根据元素在数组中的位置来选取元素。 最简单的数组就是一维数组。数组元素在内存中是依次排列的&#xff0c;如下图所示&#xff1a; 声明一个…

C++之创建与使用dll

目录 1、创建dll test.h test.cpp Source.def 2、使用dll testdll.cpp DLL&#xff0c;全称“Dynamic Link Library”&#xff0c;中文名为“动态链接库”&#xff0c;是一种在Windows操作系统中常见的库文件格式。它包含了可以由多个程序同时使用的代码和数据。与静态链接…

人工智能|机器学习——k-近邻算法(KNN分类算法)

1.简介 k-最近邻算法&#xff0c;也称为 kNN 或 k-NN&#xff0c;是一种非参数、有监督的学习分类器&#xff0c;它使用邻近度对单个数据点的分组进行分类或预测。虽然它可以用于回归问题&#xff0c;但它通常用作分类算法&#xff0c;假设可以在彼此附近找到相似点。 对于分类…

餐饮行业新风口:社区店的成功案例与经营秘诀

在竞争激烈的餐饮行业中&#xff0c;社区店正成为一个新的风口。作为一名90后的鲜奶吧创业者&#xff0c;我在社区开店已经5年时间&#xff0c;下面我将分享一些成功的社区店案例&#xff0c;并揭示其经营秘诀。 1、案例一&#xff1a;特色小吃店 这家小吃店以地方特色美食为…

MySQL安装与卸载

安装 1). 双击官方下来的安装包文件 2). 根据安装提示进行安装(全部默认就可以) 安装MySQL的相关组件&#xff0c;这个过程可能需要耗时几分钟&#xff0c;耐心等待。 输入MySQL中root用户的密码,一定记得记住该密码 配置 安装好MySQL之后&#xff0c;还需要配置环境变量&am…

数据结构与算法-插值查找

引言 在计算机科学的广阔天地中&#xff0c;数据结构和算法扮演着至关重要的角色。它们优化了信息处理的方式&#xff0c;使得我们在面对海量数据时能够高效、准确地进行检索与分析。本文将聚焦于一种基于有序数组且利用元素分布规律的查找算法——插值查找&#xff08;Interpo…

C++面向对象程序设计-北京大学-郭炜【课程笔记(五)】

C面向对象程序设计-北京大学-郭炜【课程笔记&#xff08;五&#xff09;】 1、常量对象、常量成员函数1.1、常量对象1.2、常量成员函数1.3、常引用 2、友元&#xff08;friends&#xff09;2.1、友元函数2.2、友元类 3、运算符重载的基本概念3.1、运算符重载 4、赋值运算符的重…

二维码门楼牌管理系统应用场景:推动旅游与文化产业的智慧化升级

文章目录 前言一、二维码门楼牌管理系统在旅游领域的应用二、二维码门楼牌管理系统在文化产业的应用三、结语 前言 随着信息技术的不断发展&#xff0c;二维码门楼牌管理系统作为一种创新的信息化手段&#xff0c;正在逐渐渗透到旅游和文化领域。它通过为文化景点、旅游景点和…

Java Map接口实现类之 HashMap

定义 public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable{static final int DEFAULT_INITIAL_CAPACITY 1 << 4; //默认初始化容积&#xff0c;就是默认数组的长度为 16static final int MAXIMUM_CAP…

Docker上部署LPG(loki+promtail+grafana)踩坑复盘

Docker上部署LPG&#xff08;lokipromtailgrafana&#xff09;踩坑复盘 声明网上配置部署踩坑 声明 参考掘金文章&#xff1a;https://juejin.cn/post/7008424451704356872 版本高的用docker compose命令&#xff0c;版本低的用docker-compose 按照文章描述&#xff0c;主要准备…

Windows下PostgreSQL安装教程

一、下载 https://www.enterprisedb.com/downloads/postgres-postgresql-downloads

计网(复习)黑书

1.整体概述 1.1 什么是Internet 从构成角度&#xff1a; 节点&#xff1a;主机端系统&#xff0c;及其运行的应用程序&#xff1b;路由器、交换机等网络交换设备 边&#xff1a;通信链路&#xff08;同轴电缆、光纤、无线电、卫星&#xff1b;传输速度带宽&#xff08;bps&am…

操作系统:进程优先级

目录 1.进程优先级 1.1.基本概念 1.2.其他概念 1.3.进程切换 2.解读Linux2.6内核进程的调度队列 1.进程优先级 1.1.基本概念 我们在日常生活中的经验&#xff0c;排队的本质就是确认优先级&#xff0c;排队的原因就是资源不足&#xff0c;需要进行分配。那么在内存资源有…

【论文速读】 | DeGPT:通过大语言模型优化反编译器输出

本次分享论文为&#xff1a;DeGPT: Optimizing Decompiler Output with LLM 基本信息 原文作者&#xff1a;Peiwei Hu, Ruigang Liang, Kai Chen 作者单位&#xff1a;中国科学院信息工程研究所&#xff1b;中国科学院大学网络空间安全学院 关键词&#xff1a;反向工程&…

Linux——进程信号(一)

目录 1、信号入门 1.1、技术应用角度的信号 1.2、注意 1.3、信号概念 1.4、用kill -l命令可以查看系统定义的信号列表 1.5、信号处理常见方式概览 2、产生信号 2.1通过终端按键产生信号 Core Dump 2.2、调用系统函数向进程发信号 2.3、由软条件产生信号 3、总结思考…

尚硅谷JavaScript高级学习笔记

01 准备 JavaScript中函数是对象。我们后续描述构造函数的内存模型时&#xff0c;会将构造函数称为构造函数对象。 02 数据类型 typeof 运算符来查看值的类型&#xff0c;它返回的是类型的字符串值 会做数据转换 03 相关问题 04数据_变量_内存 05相关问题1 06相关问题2 …

Typescript 哲学 morn on funtion

函数重载 overload 有一些编程语言&#xff08;eg&#xff1a;java&#xff09;允许不同的函数参数&#xff0c;对应不同的函数实现。但是&#xff0c;JavaScript 函数只能有一个实现&#xff0c;必须在这个实现当中&#xff0c;处理不同的参数。因此&#xff0c;函数体内部就…

2024蓝桥杯每日一题(前缀和)

一、第一题&#xff1a;壁画 解题思路&#xff1a;前缀和贪心枚举 仔细思考可以发现B值最大的情况是一段连续的长度为n/2上取整的序列的累加和 【Python程序代码】 import math T int(input()) for _ in range(1,1T):n int(input())s input()l math.ceil(len(s)/…

人工智能在日常生活中的应用

在我们的日常生活中&#xff0c;人工智能已经成为一种无处不在的力量&#xff0c;从智能家居到在线助手&#xff0c;再到高度个性化的服务和推荐&#xff0c;它无声地改变着我们的生活方式和习惯。随着技术的不断进步和普及&#xff0c;人工智能正以前所未有的速度和规模渗透到…