Dreamoon and Sets
传送门
Dreamoon likes to play with sets, integers and gcd \gcd gcd . gcd ( a , b ) \gcd(a,b) gcd(a,b) is defined as the largest positive integer that divides both a a a and b b b .
Let S S S be a set of exactly four distinct integers greater than 0 0 0 . Define S S S to be of rank k k k if and only if for all pairs of distinct elements s i s_{i} si , s j s_{j} sj from S S S , gcd ( s i , s j ) = k \gcd(s_{i},s_{j})=k gcd(si,sj)=k .
Given k k k and n n n , Dreamoon wants to make up n n n sets of rank k k k using integers from 1 1 1 to m m m such that no integer is used in two different sets (of course you can leave some integers without use). Calculate the minimum m m m that makes it possible and print one possible solution.
Input
The single line of the input contains two space separated integers n n n , k k k ( 1 ≤ n ≤ 10000 , 1 ≤ k ≤ 100 1 \le n \le 10000,1 \le k \le 100 1≤n≤10000,1≤k≤100 ).
Output
On the first line print a single integer — the minimal possible m m m .
On each of the next n n n lines print four space separated integers representing the i i i -th set.
Neither the order of the sets nor the order of integers within a set is important. If there are multiple possible solutions with minimal m m m , print any one of them.
Examples
input #1
1 1
output #1
5
1 2 3 5
input #2
2 2
output #2
22
2 4 6 22
14 18 10 16
Note
For the first example it’s easy to see that set 1 , 2 , 3 , 4 {1,2,3,4} 1,2,3,4 isn’t a valid set of rank 1 since gcd ( 2 , 4 ) = 2 ≠ 1 \gcd(2,4)=2\not=1 gcd(2,4)=2=1 .
题目翻译(Chinese)
输入 n , k n,k n,k,输出 n n n 个四元组。
满足以下条件
- 对于任意一个四元组,其中任意两个不同数的最大公约数是 k k k
- 每个数仅在所有的四元组内出现一次
要求 n n n 个四元组内最大的数最小。
第一行输出最大的数,下面 n n n 行输出四元组。
1 ≤ n ≤ 10000 1\le n\le 10000 1≤n≤10000
1 ≤ k ≤ 100 1\le k\le 100 1≤k≤100
输出四元组时,顺序和整数的顺序都不重要,你可以任意输出。
注明
以上来自 C o d e F o r c e s ,翻译:洛谷。 以上来自 CodeForces,翻译:洛谷。 以上来自CodeForces,翻译:洛谷。( T h e The The P r o b l e m Problem Problem i s is is f r o m from from C o d e F o r c e s CodeForces CodeForces, t r a n s l a t e translate translate b y by by L u o g u . Luogu. Luogu.)
DeepL的翻译太抽象了,就用洛谷了。(The translation of DeepL is too abstract, so I’ll use Lougu.)
解题思路(Solution)
中文版(Chinese Version)
结论:若我们将集合中的每个数字除以 k k k,那么这个集合的秩(鸡)就是 1 1 1。因此,我们可以找到 n n n 个秩为 1 1 1 的集合,然后将每个数字乘以 k k k。
至于如何找到 n n n 个秩为 1 1 1 的集合,我们可以使用 { 6 a + 1 , 6 a + 2 , 6 a + 3 , 6 a + 5 } \{6a + 1, 6a + 2, 6a + 3, 6a + 5\} {6a+1,6a+2,6a+3,6a+5} 作为有效的秩为 1 1 1 的集合,并取 a = 0 a = 0 a=0 至 n − 1 n - 1 n−1 组成 n n n 个集合,因此 m = n × k × 6 − k m = n \times k \times 6 - k m=n×k×6−k。
证明: m m m 最小的方法是在每个集合中连续取三个奇数。如果我们取较少的奇数,那么一个集合中就会有一个以上的偶数,而显然该集合满足 gcd ( { x 1 , x 2 , … , x n } ) m o d 2 = 0 \gcd(\{x_1,x_2,\dots,x_n\}) \mod 2=0 gcd({x1,x2,…,xn})mod2=0。
英文版(Engish Version)
Click here.
AC Code
#include<bits/stdc++.h>
using namespace std;
int n, k;
signed main() {cin >> n >> k, printf("%d\n", (n * 6 - 1)*k);for (register int i = 1, x; i <= n; ++i) x = i * 6 - 5, printf("%d %d %d %d\n", (x * k), ((x + 1) * k), ((x + 2) * k), ((x + 4) * k));return 0;
}
重要提醒(The Most Important Thing)
今天是妇女节,祝全球女士节日快乐。(It’s Women’s Day. Happy Women’s Day to women all over the world.)