4.1. if
语句
最让人耳熟能详的语句应当是 if 语句:
>>>
>>> x = int(input("Please enter an integer: ")) Please enter an integer: 42 >>> if x < 0: ... x = 0 ... print('Negative changed to zero') ... elif x == 0: ... print('Zero') ... elif x == 1: ... print('Single') ... else: ... print('More') ... More
可有零个或多个 elif 部分,else 部分也是可选的。关键字 'elif
' 是 'else if' 的缩写,用于避免过多的缩进。if
... elif
... elif
... 序列可以当作其它语言中 switch
或 case
语句的替代品。
如果是把一个值与多个常量进行比较,或者检查特定类型或属性,match
语句更有用。详见 match 语句。
4.2. for
语句
Python 的 for 语句与 C 或 Pascal 中的不同。Python 的 for
语句不迭代算术递增数值(如 Pascal),或是给予用户定义迭代步骤和结束条件的能力(如 C),而是在列表或字符串等任意序列的元素上迭代,按它们在序列中出现的顺序。 例如(这不是有意要暗指什么):
>>>
>>> # Measure some strings: ... words = ['cat', 'window', 'defenestrate'] >>> for w in words: ... print(w, len(w)) ... cat 3 window 6 defenestrate 12
很难正确地在迭代多项集的同时修改多项集的内容。更简单的方法是迭代多项集的副本或者创建新的多项集:
# Create a sample collection users = {'Hans': 'active', 'Éléonore': 'inactive', '景太郎': 'active'}# Strategy: Iterate over a copy for user, status in users.copy().items():if status == 'inactive':del users[user]# Strategy: Create a new collection active_users = {} for user, status in users.items():if status == 'active':active_users[user] = status
4.3. range() 函数
内置函数 range() 用于生成等差数列:
>>>
>>> for i in range(5): ... print(i) ... 0 1 2 3 4
生成的序列绝不会包括给定的终止值;range(10)
生成 10 个值——长度为 10 的序列的所有合法索引。range 可以不从 0 开始,且可以按给定的步长递增(即使是负数步长):
>>>
>>> list(range(5, 10)) [5, 6, 7, 8, 9]>>> list(range(0, 10, 3)) [0, 3, 6, 9]>>> list(range(-10, -100, -30)) [-10, -40, -70]
要按索引迭代序列,可以组合使用 range() 和 len():
>>>
>>> a = ['Mary', 'had', 'a', 'little', 'lamb'] >>> for i in range(len(a)): ... print(i, a[i]) ... 0 Mary 1 had 2 a 3 little 4 lamb
不过大多数情况下 enumerate() 函数很方便,详见 循环的技巧。
如果直接打印一个 range 会发生意想不到的事情:
>>>
>>> range(10) range(0, 10)
range() 返回的对象在很多方面和列表的行为一样,但其实它和列表不一样。该对象只有在被迭代时才一个一个地返回所期望的列表项,并没有真正生成过一个含有全部项的列表,从而节省了空间。
这种对象称为可迭代对象 iterable,适合作为需要获取一系列值的函数或程序构件的参数。for 语句就是这样的程序构件;以可迭代对象作为参数的函数例如 sum():
>>>
>>> sum(range(4)) # 0 + 1 + 2 + 3 6
之后我们会看到更多返回可迭代对象,或以可迭代对象作为参数的函数。在 数据结构 这一章中,我们将讨论 list() 的更多细节。
4.4. 循环中的 break
、continue
语句及 else
子句
break 语句将跳出最近的一层 for 或 while 循环。
for
或 while
循环可以包括 else
子句。
在 for 循环中,else
子句会在循环成功结束最后一次迭代之后执行。
在 while 循环中,它会在循环条件变为假值后执行。
无论哪种循环,如果因为 break 而结束,那么 else
子句就 不会 执行。
下面的搜索质数的 for
循环就是一个例子:
>>>
>>> for n in range(2, 10): ... for x in range(2, n): ... if n % x == 0: ... print(n, 'equals', x, '*', n//x) ... break ... else: ... # loop fell through without finding a factor ... print(n, 'is a prime number') ... 2 is a prime number 3 is a prime number 4 equals 2 * 2 5 is a prime number 6 equals 2 * 3 7 is a prime number 8 equals 2 * 4 9 equals 3 * 3
(没错,这段代码就是这么写。仔细看:else
子句属于 for 循环,不属于 if 语句。)
else
子句用于循环时比起 if 语句的 else
子句,更像 try 语句的。try 语句的 else
子句在未发生异常时执行,循环的 else
子句则在未发生 break
时执行。 try
语句和异常详见 异常的处理。
continue 语句,同样借鉴自 C 语言,以执行循环的下一次迭代来继续:
>>>
>>> for num in range(2, 10): ... if num % 2 == 0: ... print("Found an even number", num) ... continue ... print("Found an odd number", num) ... Found an even number 2 Found an odd number 3 Found an even number 4 Found an odd number 5 Found an even number 6 Found an odd number 7 Found an even number 8 Found an odd number 9
4.5. pass
语句
pass 语句不执行任何动作。语法上需要一个语句,但程序毋需执行任何动作时,可以使用该语句。例如:
>>>
>>> while True: ... pass # Busy-wait for keyboard interrupt (Ctrl+C) ...
这常用于创建一个最小的类:
>>>
>>> class MyEmptyClass: ... pass ...
pass 还可用作函数或条件语句体的占位符,让你保持在更抽象的层次进行思考。pass
会被默默地忽略:
>>>
>>> def initlog(*args): ... pass # Remember to implement this! ...
4.6. match
语句
match 语句接受一个表达式并把它的值与一个或多个 case 块给出的一系列模式进行比较。这表面上像 C、Java 或 JavaScript(以及许多其他程序设计语言)中的 switch 语句,但其实它更像 Rust 或 Haskell 中的模式匹配。只有第一个匹配的模式会被执行,并且它还可以提取值的组成部分(序列的元素或对象的属性)赋给变量。
最简单的形式是将一个主语值与一个或多个字面值进行比较:
def http_error(status):match status:case 400:return "Bad request"case 404:return "Not found"case 418:return "I'm a teapot"case _:return "Something's wrong with the internet"
注意最后一个代码块:“变量名” _
被作为 通配符 并必定会匹配成功。如果没有 case 匹配成功,则不会执行任何分支。
你可以用 |
(“或”)将多个字面值组合到一个模式中:
case 401 | 403 | 404:return "Not allowed"
形如解包赋值的模式可被用于绑定变量:
# point is an (x, y) tuple match point:case (0, 0):print("Origin")case (0, y):print(f"Y={y}")case (x, 0):print(f"X={x}")case (x, y):print(f"X={x}, Y={y}")case _:raise ValueError("Not a point")
请仔细学习此代码!第一个模式有两个字面值,可视为前述字面值模式的扩展。接下来的两个模式结合了一个字面值和一个变量,变量 绑定 了来自主语(point
)的一个值。第四个模式捕获了两个值,使其在概念上与解包赋值 (x, y) = point
类似。
如果用类组织数据,可以用“类名后接一个参数列表”这种很像构造器的形式,把属性捕获到变量里:
class Point:def __init__(self, x, y):self.x = xself.y = ydef where_is(point):match point:case Point(x=0, y=0):print("Origin")case Point(x=0, y=y):print(f"Y={y}")case Point(x=x, y=0):print(f"X={x}")case Point():print("Somewhere else")case _:print("Not a point")
一些内置类(如 dataclass)为属性提供了一个顺序,此时,可以使用位置参数。自定义类可通过在类中设置特殊属性 __match_args__
,为属性指定其在模式中对应的位置。若设为 ("x", "y"),则以下模式相互等价(且都把属性 y
绑定到变量 var
):
Point(1, var) Point(1, y=var) Point(x=1, y=var) Point(y=var, x=1)
建议这样来阅读一个模式——通过将其视为赋值语句等号左边的一种扩展形式,来理解各个变量被设为何值。match 语句只会为单一的名称(如上面的 var
)赋值,而不会赋值给带点号的名称(如 foo.bar
)、属性名(如上面的 x=
和 y=
)和类名(是通过其后的 "(...)" 来识别的,如上面的 Point
)。
模式可以任意嵌套。举例来说,如果我们有一个由 Point 组成的列表,且 Point 添加了 __match_args__
时,我们可以这样来匹配它:
class Point:__match_args__ = ('x', 'y')def __init__(self, x, y):self.x = xself.y = ymatch points:case []:print("No points")case [Point(0, 0)]:print("The origin")case [Point(x, y)]:print(f"Single point {x}, {y}")case [Point(0, y1), Point(0, y2)]:print(f"Two on the Y axis at {y1}, {y2}")case _:print("Something else")
我们可以为模式添加 if
作为守卫子句。如果守卫子句的值为假,那么 match
会继续尝试匹配下一个 case 块。注意是先将值捕获,再对守卫子句求值:
match point:case Point(x, y) if x == y:print(f"Y=X at {x}")case Point(x, y):print(f"Not on the diagonal")
该语句的一些其它关键特性:
-
与解包赋值类似,元组和列表模式具有完全相同的含义并且实际上都能匹配任意序列,区别是它们不能匹配迭代器或字符串。
-
序列模式支持扩展解包:
[x, y, *rest]
和(x, y, *rest)
和相应的解包赋值做的事是一样的。接在*
后的名称也可以为_
,所以(x, y, *_)
匹配含至少两项的序列,而不必绑定剩余的项。 -
映射模式:
{"bandwidth": b, "latency": l}
从字典中捕获"bandwidth"
和"latency"
的值。额外的键会被忽略,这一点与序列模式不同。**rest
这样的解包也支持。(但**_
将会是冗余的,故不允许使用。) -
使用
as
关键字可以捕获子模式:case (Point(x1, y1), Point(x2, y2) as p2): ...
将把输入中的第二个元素捕获为
p2
(只要输入是包含两个点的序列) -
大多数字面值是按相等性比较的,但是单例对象
True
、False
和None
则是按 id 比较的。 -
模式可以使用具名常量。它们必须作为带点号的名称出现,以防止它们被解释为用于捕获的变量:
from enum import Enum class Color(Enum):RED = 'red'GREEN = 'green'BLUE = 'blue'color = Color(input("Enter your choice of 'red', 'blue' or 'green': "))match color:case Color.RED:print("I see red!")case Color.GREEN:print("Grass is green")case Color.BLUE:print("I'm feeling the blues :(")
更详细的说明和更多示例,可参阅以教程格式撰写的 PEP 636。
4.7. 定义函数
下列代码创建一个可以输出限定数值内的斐波那契数列函数:
>>>
>>> def fib(n): # write Fibonacci series up to n ... """Print a Fibonacci series up to n.""" ... a, b = 0, 1 ... while a < n: ... print(a, end=' ') ... a, b = b, a+b ... print() ... >>> # Now call the function we just defined: ... fib(2000) 0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987 1597
定义 函数使用关键字 def,后跟函数名与括号内的形参列表。函数语句从下一行开始,并且必须缩进。
函数内的第一条语句是字符串时,该字符串就是文档字符串,也称为 docstring,详见 文档字符串。利用文档字符串可以自动生成在线文档或打印版文档,还可以让开发者在浏览代码时直接查阅文档;Python 开发者最好养成在代码中加入文档字符串的好习惯。
函数在 执行 时使用函数局部变量符号表,所有函数变量赋值都存在局部符号表中;引用变量时,首先,在局部符号表里查找变量,然后,是外层函数局部符号表,再是全局符号表,最后是内置名称符号表。因此,尽管可以引用全局变量和外层函数的变量,但最好不要在函数内直接赋值(除非是 global 语句定义的全局变量,或 nonlocal 语句定义的外层函数变量)。
在调用函数时会将实际参数(实参)引入到被调用函数的局部符号表中;因此,实参是使用 按值调用 来传递的(其中的 值 始终是对象的 引用 而不是对象的值)。 [1] 当一个函数调用另外一个函数时,会为该调用创建一个新的局部符号表。
函数定义在当前符号表中把函数名与函数对象关联在一起。解释器把函数名指向的对象作为用户自定义函数。还可以使用其他名称指向同一个函数对象,并访问访该函数:
>>>
>>> fib <function fib at 10042ed0> >>> f = fib >>> f(100) 0 1 1 2 3 5 8 13 21 34 55 89
fib
不返回值,因此,其他语言不把它当作函数,而是当作过程。事实上,没有 return 语句的函数也返回值,只不过这个值比较是 None
(是一个内置名称)。一般来说,解释器不会输出单独的返回值 None
,如需查看该值,可以使用 print():
>>>
>>> fib(0) >>> print(fib(0)) None
编写不直接输出斐波那契数列运算结果,而是返回运算结果列表的函数也非常简单:
>>>
>>> def fib2(n): # return Fibonacci series up to n ... """Return a list containing the Fibonacci series up to n.""" ... result = [] ... a, b = 0, 1 ... while a < n: ... result.append(a) # see below ... a, b = b, a+b ... return result ... >>> f100 = fib2(100) # call it >>> f100 # write the result [0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
本例也新引入了一些 Python 功能:
-
return 语句返回函数的值。
return
语句不带表达式参数时,返回None
。函数执行完毕退出也返回None
。 -
语句
result.append(a)
调用了列表对象result
的 方法。 方法是‘从属于’对象的函数,其名称为obj.methodname
,其中obj
是某个对象(可以是一个表达式),methodname
是由对象的类型定义的方法名称。 不同的类型定义了不同的方法。 不同的类型的方法可以使用相同的名称而不会产生歧义。 (使用 类 可以定义自己的对象类型和方法,参见 类。) 在示例中显示的方法append()
是由列表对象定义的;它会在列表的末尾添加一个新元素。 在本例中它等同于result = result + [a]
,但效率更高。
4.8. 函数定义详解
函数定义支持可变数量的参数。这里列出三种可以组合使用的形式。
4.8.1. 默认值参数
为参数指定默认值是非常有用的方式。调用函数时,可以使用比定义时更少的参数,例如:
def ask_ok(prompt, retries=4, reminder='Please try again!'):while True:reply = input(prompt)if reply in {'y', 'ye', 'yes'}:return Trueif reply in {'n', 'no', 'nop', 'nope'}:return Falseretries = retries - 1if retries < 0:raise ValueError('invalid user response')print(reminder)
该函数可以用以下方式调用:
-
只给出必选实参:
ask_ok('Do you really want to quit?')
-
给出一个可选实参:
ask_ok('OK to overwrite the file?', 2)
-
给出所有实参:
ask_ok('OK to overwrite the file?', 2, 'Come on, only yes or no!')
本例还使用了关键字 in ,用于确认序列中是否包含某个值。
默认值在 定义 作用域里的函数定义中求值,所以:
i = 5def f(arg=i):print(arg)i = 6 f()
上例输出的是 5
。
重要警告: 默认值只计算一次。默认值为列表、字典或类实例等可变对象时,会产生与该规则不同的结果。例如,下面的函数会累积后续调用时传递的参数:
def f(a, L=[]):L.append(a)return Lprint(f(1)) print(f(2)) print(f(3))
输出结果如下:
[1] [1, 2] [1, 2, 3]
不想在后续调用之间共享默认值时,应以如下方式编写函数:
def f(a, L=None):if L is None:L = []L.append(a)return L
4.8.2. 关键字参数
kwarg=value
形式的 关键字参数 也可以用于调用函数。函数示例如下:
def parrot(voltage, state='a stiff', action='voom', type='Norwegian Blue'):print("-- This parrot wouldn't", action, end=' ')print("if you put", voltage, "volts through it.")print("-- Lovely plumage, the", type)print("-- It's", state, "!")
该函数接受一个必选参数(voltage
)和三个可选参数(state
, action
和 type
)。该函数可用下列方式调用:
parrot(1000) # 1 positional argument parrot(voltage=1000) # 1 keyword argument parrot(voltage=1000000, action='VOOOOOM') # 2 keyword arguments parrot(action='VOOOOOM', voltage=1000000) # 2 keyword arguments parrot('a million', 'bereft of life', 'jump') # 3 positional arguments parrot('a thousand', state='pushing up the daisies') # 1 positional, 1 keyword
以下调用函数的方式都无效:
parrot() # required argument missing parrot(voltage=5.0, 'dead') # non-keyword argument after a keyword argument parrot(110, voltage=220) # duplicate value for the same argument parrot(actor='John Cleese') # unknown keyword argument
函数调用时,关键字参数必须跟在位置参数后面。所有传递的关键字参数都必须匹配一个函数接受的参数(比如,actor
不是函数 parrot
的有效参数),关键字参数的顺序并不重要。这也包括必选参数,(比如,parrot(voltage=1000)
也有效)。不能对同一个参数多次赋值,下面就是一个因此限制而失败的例子:
>>>
>>> def function(a): ... pass ... >>> function(0, a=0) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: function() got multiple values for argument 'a'
最后一个形参为 **name
形式时,接收一个字典(详见 映射类型 --- dict),该字典包含与函数中已定义形参对应之外的所有关键字参数。**name
形参可以与 *name
形参(下一小节介绍)组合使用(*name
必须在 **name
前面), *name
形参接收一个 元组,该元组包含形参列表之外的位置参数。例如,可以定义下面这样的函数:
def cheeseshop(kind, *arguments, **keywords):print("-- Do you have any", kind, "?")print("-- I'm sorry, we're all out of", kind)for arg in arguments:print(arg)print("-" * 40)for kw in keywords:print(kw, ":", keywords[kw])
该函数可以用如下方式调用:
cheeseshop("Limburger", "It's very runny, sir.","It's really very, VERY runny, sir.",shopkeeper="Michael Palin",client="John Cleese",sketch="Cheese Shop Sketch")
输出结果如下:
-- Do you have any Limburger ? -- I'm sorry, we're all out of Limburger It's very runny, sir. It's really very, VERY runny, sir. ---------------------------------------- shopkeeper : Michael Palin client : John Cleese sketch : Cheese Shop Sketch
注意,关键字参数在输出结果中的顺序与调用函数时的顺序一致。
4.8.3. 特殊参数
默认情况下,参数可以按位置或显式关键字传递给 Python 函数。为了让代码易读、高效,最好限制参数的传递方式,这样,开发者只需查看函数定义,即可确定参数项是仅按位置、按位置或关键字,还是仅按关键字传递。
函数定义如下:
def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):----------- ---------- ----------| | || Positional or keyword || - Keyword only-- Positional only
/
和 *
是可选的。这些符号表明形参如何把参数值传递给函数:位置、位置或关键字、关键字。关键字形参也叫作命名形参。
4.8.3.1. 位置或关键字参数
函数定义中未使用 /
和 *
时,参数可以按位置或关键字传递给函数。
4.8.3.2. 仅位置参数
此处再介绍一些细节,特定形参可以标记为 仅限位置。仅限位置 时,形参的顺序很重要,且这些形参不能用关键字传递。仅限位置形参应放在 /
(正斜杠)前。/
用于在逻辑上分割仅限位置形参与其它形参。如果函数定义中没有 /
,则表示没有仅限位置形参。
/
后可以是 位置或关键字 或 仅限关键字 形参。
4.8.3.3. 仅限关键字参数
把形参标记为 仅限关键字,表明必须以关键字参数形式传递该形参,应在参数列表中第一个 仅限关键字 形参前添加 *
。
4.8.3.4. 函数示例
请看下面的函数定义示例,注意 /
和 *
标记:
>>>
>>> def standard_arg(arg): ... print(arg) ... >>> def pos_only_arg(arg, /): ... print(arg) ... >>> def kwd_only_arg(*, arg): ... print(arg) ... >>> def combined_example(pos_only, /, standard, *, kwd_only): ... print(pos_only, standard, kwd_only)
第一个函数定义 standard_arg
是最常见的形式,对调用方式没有任何限制,可以按位置也可以按关键字传递参数:
>>>
>>> standard_arg(2) 2>>> standard_arg(arg=2) 2
第二个函数 pos_only_arg
的函数定义中有 /
,仅限使用位置形参:
>>>
>>> pos_only_arg(1) 1>>> pos_only_arg(arg=1) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: pos_only_arg() got some positional-only arguments passed as keyword arguments: 'arg'
第三个函数 kwd_only_args
的函数定义通过 *
表明仅限关键字参数:
>>>
>>> kwd_only_arg(3) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: kwd_only_arg() takes 0 positional arguments but 1 was given>>> kwd_only_arg(arg=3) 3
最后一个函数在同一个函数定义中,使用了全部三种调用惯例:
>>>
>>> combined_example(1, 2, 3) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: combined_example() takes 2 positional arguments but 3 were given>>> combined_example(1, 2, kwd_only=3) 1 2 3>>> combined_example(1, standard=2, kwd_only=3) 1 2 3>>> combined_example(pos_only=1, standard=2, kwd_only=3) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: combined_example() got some positional-only arguments passed as keyword arguments: 'pos_only'
下面的函数定义中,kwds
把 name
当作键,因此,可能与位置参数 name
产生潜在冲突:
def foo(name, **kwds):return 'name' in kwds
调用该函数不可能返回 True
,因为关键字 'name'
总与第一个形参绑定。例如:
>>>
>>> foo(1, **{'name': 2}) Traceback (most recent call last):File "<stdin>", line 1, in <module> TypeError: foo() got multiple values for argument 'name' >>>
加上 /
(仅限位置参数)后,就可以了。此时,函数定义把 name
当作位置参数,'name'
也可以作为关键字参数的键:
>>>
>>> def foo(name, /, **kwds): ... return 'name' in kwds ... >>> foo(1, **{'name': 2}) True
换句话说,仅限位置形参的名称可以在 **kwds
中使用,而不产生歧义。
4.8.3.5. 小结
以下用例决定哪些形参可以用于函数定义:
def f(pos1, pos2, /, pos_or_kwd, *, kwd1, kwd2):
说明:
-
使用仅限位置形参,可以让用户无法使用形参名。形参名没有实际意义时,强制调用函数的实参顺序时,或同时接收位置形参和关键字时,这种方式很有用。
-
当形参名有实际意义,且显式名称可以让函数定义更易理解时,阻止用户依赖传递实参的位置时,才使用关键字。
-
对于 API,使用仅限位置形参,可以防止未来修改形参名时造成破坏性的 API 变动。
4.8.4. 任意实参列表
调用函数时,使用任意数量的实参是最少见的选项。这些实参包含在元组中(详见 元组和序列 )。在可变数量的实参之前,可能有若干个普通参数:
def write_multiple_items(file, separator, *args):file.write(separator.join(args))
variadic 参数用于采集传递给函数的所有剩余参数,因此,它们通常在形参列表的末尾。*args
形参后的任何形式参数只能是仅限关键字参数,即只能用作关键字参数,不能用作位置参数:
>>>
>>> def concat(*args, sep="/"): ... return sep.join(args) ... >>> concat("earth", "mars", "venus") 'earth/mars/venus' >>> concat("earth", "mars", "venus", sep=".") 'earth.mars.venus'
4.8.5. 解包实参列表
函数调用要求独立的位置参数,但实参在列表或元组里时,要执行相反的操作。例如,内置的 range() 函数要求独立的 start 和 stop 实参。如果这些参数不是独立的,则要在调用函数时,用 *
操作符把实参从列表或元组解包出来:
>>>
>>> list(range(3, 6)) # normal call with separate arguments [3, 4, 5] >>> args = [3, 6] >>> list(range(*args)) # call with arguments unpacked from a list [3, 4, 5]
同样,字典可以用 **
操作符传递关键字参数:
>>>
>>> def parrot(voltage, state='a stiff', action='voom'): ... print("-- This parrot wouldn't", action, end=' ') ... print("if you put", voltage, "volts through it.", end=' ') ... print("E's", state, "!") ... >>> d = {"voltage": "four million", "state": "bleedin' demised", "action": "VOOM"} >>> parrot(**d) -- This parrot wouldn't VOOM if you put four million volts through it. E's bleedin' demised !
4.8.6. Lambda 表达式
lambda 关键字用于创建小巧的匿名函数。lambda a, b: a+b
函数返回两个参数的和。Lambda 函数可用于任何需要函数对象的地方。在语法上,匿名函数只能是单个表达式。在语义上,它只是常规函数定义的语法糖。与嵌套函数定义一样,lambda 函数可以引用包含作用域中的变量:
>>>
>>> def make_incrementor(n): ... return lambda x: x + n ... >>> f = make_incrementor(42) >>> f(0) 42 >>> f(1) 43
上例用 lambda 表达式返回函数。还可以把匿名函数用作传递的实参:
>>>
>>> pairs = [(1, 'one'), (2, 'two'), (3, 'three'), (4, 'four')] >>> pairs.sort(key=lambda pair: pair[1]) >>> pairs [(4, 'four'), (1, 'one'), (3, 'three'), (2, 'two')]
4.8.7. 文档字符串
以下是文档字符串内容和格式的约定。
第一行应为对象用途的简短摘要。为保持简洁,不要在这里显式说明对象名或类型,因为可通过其他方式获取这些信息(除非该名称碰巧是描述函数操作的动词)。这一行应以大写字母开头,以句点结尾。
文档字符串为多行时,第二行应为空白行,在视觉上将摘要与其余描述分开。后面的行可包含若干段落,描述对象的调用约定、副作用等。
Python 解析器不会删除 Python 中多行字符串字面值的缩进,因此,文档处理工具应在必要时删除缩进。这项操作遵循以下约定:文档字符串第一行 之后 的第一个非空行决定了整个文档字符串的缩进量(第一行通常与字符串开头的引号相邻,其缩进在字符串中并不明显,因此,不能用第一行的缩进),然后,删除字符串中所有行开头处与此缩进“等价”的空白符。不能有比此缩进更少的行,但如果出现了缩进更少的行,应删除这些行的所有前导空白符。转化制表符后(通常为 8 个空格),应测试空白符的等效性。
下面是多行文档字符串的一个例子:
>>>
>>> def my_function(): ... """Do nothing, but document it. ... ... No, really, it doesn't do anything. ... """ ... pass ... >>> print(my_function.__doc__) Do nothing, but document it.No, really, it doesn't do anything.
4.8.8. 函数注解
函数注解 是可选的用户自定义函数类型的元数据完整信息(详见 PEP 3107 和 PEP 484 )。
标注 以字典的形式存放在函数的 __annotations__
属性中而对函数的其他部分没有影响。 形参标注的定义方式是在形参名后加冒号,后面跟一个会被求值为标注的值的表达式。 返回值标注的定义方式是加组合符号 ->
,后面跟一个表达式,这样的校注位于形参列表和表示 def 语句结束的冒号。 下面的示例有一个必须的参数、一个可选的关键字参数以及返回值都带有相应的标注:
>>>
>>> def f(ham: str, eggs: str = 'eggs') -> str: ... print("Annotations:", f.__annotations__) ... print("Arguments:", ham, eggs) ... return ham + ' and ' + eggs ... >>> f('spam') Annotations: {'ham': <class 'str'>, 'return': <class 'str'>, 'eggs': <class 'str'>} Arguments: spam eggs 'spam and eggs'
4.9. 小插曲:编码风格
现在你将要写更长,更复杂的 Python 代码,是时候讨论一下 代码风格 了。 大多数语言都能以不同的风格被编写(或更准确地说,被格式化);有些比其他的更具有可读性。 能让其他人轻松阅读你的代码总是一个好主意,采用一种好的编码风格对此有很大帮助。
Python 项目大多都遵循 PEP 8 的风格指南;它推行的编码风格易于阅读、赏心悦目。Python 开发者均应抽时间悉心研读;以下是该提案中的核心要点:
-
缩进,用 4 个空格,不要用制表符。
4 个空格是小缩进(更深嵌套)和大缩进(更易阅读)之间的折中方案。制表符会引起混乱,最好别用。
-
换行,一行不超过 79 个字符。
这样换行的小屏阅读体验更好,还便于在大屏显示器上并排阅读多个代码文件。
-
用空行分隔函数和类,及函数内较大的代码块。
-
最好把注释放到单独一行。
-
使用文档字符串。
-
运算符前后、逗号后要用空格,但不要直接在括号内使用:
a = f(1, 2) + g(3, 4)
。 -
类和函数的命名要一致;按惯例,命名类用
UpperCamelCase
,命名函数与方法用lowercase_with_underscores
。命名方法中第一个参数总是用self
(类和方法详见 初探类)。 -
编写用于国际多语环境的代码时,不要用生僻的编码。Python 默认的 UTF-8 或纯 ASCII 可以胜任各种情况。
-
同理,就算多语阅读、维护代码的可能再小,也不要在标识符中使用非 ASCII 字符。