谷歌开源的LLM大模型 Gemma 简介

 相关链接:

  • Hugging face模型下载地址:https://huggingface.co/google/gemma-7b
  • Github地址:https://github.com/google/gemma_pytorch
  • 论文地址:https://storage.googleapis.com/deepmind-media/gemma/gemma-report.pdf
  • 官方博客:Gemma: Google introduces new state-of-the-art open models

Gemma简介

谷歌推出了 Gemma,一个开放大型语言模型 (LLM) 的尖端系列,标志着其致力于开源人工智能的重要一步。同时Gemma 与 Hugging Face 平台的无缝集成,可以让AIGC爱好者更好的去使用。

Gemma 是基于 Gemini 技术推出的四款新型大型语言模型(LLM),提供了 2B 和 7B 两种不同规模的版本,每种都包含了预训练基础版本和经过指令优化的版本。所有版本均可在各类消费级硬件上运行,无需数据量化处理,拥有高达 8K tokens 的处理能力:

  • gemma-7b:7B 参数的基础模型。
  • gemma-7b-it:7B 参数的指令优化版本。
  • gemma-2b:2B 参数的基础模型。
  • gemma-2b-it:2B 参数的指令优化版本。

Gemma 模型的性能如何?以下是其基础版本与其他开放模型在 LLM 排行榜 上的比较(得分越高越好):

Gemma 7B 型号脱颖而出,是一款特别强大的选择,其性能可与 7B 重量级顶级竞争者的性能相媲美,包括 Mistral 7B 等。另一方面,Gemma 2B 型号的尺寸提供了一个有趣的选择。然而,与类似尺寸的最熟练模型(例如 Phi 2)相比,它在排行榜上的排名并不高。

数据集

这些模型在包​​含各种来源、总计 6 万亿个Token的文本数据集上进行训练。以下是关键信息:

  • 网络文档:多样化的网络文本集合确保模型能够接触到广泛的语言风格、主题和词汇。主要是英语内容。
  • 代码:将模型暴露给代码有助于它学习编程语言的语法和模式,从而提高其生成代码或理解与代码相关的问题的能力。
  • 数学:数学文本训练有助于模型学习逻辑推理、符号表示以及解决数学查询。

Prompt 提示词格式

Gemma 的基础模型不限定特定的提示格式。如同其他基础模型,它们能够根据输入序列生成一个合理的续接内容,适用于零样本或少样本的推理任务。这些模型也为针对特定应用场景的微调提供了坚实的基础。指令优化版本则采用了一种极其简洁的对话结构:

<start_of_turn>用户_ _
敲击<end_of_turn> 
<start_of_turn>模型​​​​
谁在那里< end_of_turn > 
< start_of_turn >用户
Gemma <end_of_turn> 
<start_of_turn>模型_ _ _ _
杰玛是谁?<转弯结束>

要有效利用这一格式,必须严格按照上述结构进行对话。

探索未知领域

尽管技术报告提供了关于基础模型训练和评估过程的信息,但关于数据集构成和预处理的具体细节则较为欠缺。据悉,这些模型是基于来自互联网文档、编程代码和数学文本等多种数据源训练而成,经过严格筛选,以排除含有敏感信息和不适内容的数据。

对于 Gemma 的指令优化模型,关于微调数据集以及与顺序微调技术(SFT)和 基于人类反馈的强化学习(RLHF)相关的超参数设置,细节同样未公开。

演示

可以在 Hugging Chat 上体验与 Gemma 指令模型的互动对话!点击此处访问:https://huggingface.co/chat?model=google/gemma-7b-it

或者也可以在其他开源社区体验Gemma。

使用 Transformers

借助 Transformers 的 4.38 版本,你可以轻松地使用 Gemma 模型,并充分利用 Hugging Face 生态系统内的工具,包括:

  • 训练和推理脚本及示例
  • 安全文件格式(safetensors
  • 集成了诸如 bitsandbytes(4位量化)、PEFT(参数效率微调)和 Flash Attention 2 等工具
  • 辅助工具和帮助器,以便使用模型进行生成
  • 导出模型以便部署的机制

另外,Gemma 模型支持 torch.compile() 与 CUDA 图的结合使用,在推理时可实现约 4 倍的速度提升!

确保你使用的是最新版本的 transformers

pip install -U "transformers==4.38.1" --upgrade

以下代码片段展示了如何结合 transformers 使用 gemma-7b-it。运行此代码需大约 18 GB 的 RAM,适用于包括 3090 或 4090 在内的消费级 GPU。

from transformers import AutoTokenizer, pipeline
import torchmodel = "google/gemma-7b-it"tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = pipeline("text-generation",model=model,model_kwargs={"torch_dtype": torch.bfloat16},device="cuda",
)messages = [{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
]
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipeline(prompt,max_new_tokens=256,do_sample=True,temperature=0.7,top_k=50,top_p=0.95
)
print(outputs[0]["generated_text"][len(prompt):])

Avast me, me hearty. I am a pirate of the high seas, ready to pillage and plunder. Prepare for a tale of adventure and booty!

  • 我们使用了 bfloat16 数据类型进行模型推理,该数据类型是所有评估中使用的参考精度。如果你的硬件支持,使用 float16 可能会更快。
  • 你还可以将模型自动量化,以 8 位或 4 位模式加载。以 4 位模式加载模型大约需要 9 GB 的内存,使其适用于多种消费级显卡,包括 Google Colab 上的所有 GPU。以下是以 4 位加载生成 pipeline 的方法:
pipeline = pipeline("text-generation",model=model,model_kwargs={"torch_dtype": torch.float16,"quantization_config": {"load_in_4bit": True}},
)

更多关于如何使用 transformers 和模型的详情,请参阅 模型卡片。

JAX 权重

所有 Gemma 模型变种都可以用 PyTorch 或 JAX / Flax 使用。若要加载 Flax 权重,你需要按照以下方式使用仓库中的 flax 修订版本:

import jax.numpy as jnp
from transformers import AutoTokenizer, FlaxGemmaForCausalLMmodel_id = "google/gemma-2b"tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.padding_side = "left"model, params = FlaxGemmaForCausalLM.from_pretrained(model_id,dtype=jnp.bfloat16,revision="flax",_do_init=False,
)inputs = tokenizer("Valencia and Málaga are", return_tensors="np", padding=True)
output = model.generate(inputs, params=params, max_new_tokens=20, do_sample=False)
output_text = tokenizer.batch_decode(output.sequences, skip_special_tokens=True)

['Valencia and Málaga are two of the most popular tourist destinations in Spain. Both cities boast a rich history, vibrant culture,']

如果你在 TPU 或多个 GPU 设备上运行,可以利用 jit 和 pmap 来编译和并行执行推理任务。

与 Google Cloud 集成

你可以通过 Vertex AI 或 Google Kubernetes Engine (GKE) 在 Google Cloud 上部署和训练 Gemma,利用 文本生成推理 和 Transformers 实现。

要从 Hugging Face 部署 Gemma 模型,请访问模型页面并点击部署 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以通过 Vertex AI 或 GKE 一键部署 Gemma。文本生成推理为 Gemma 在 Google Cloud 上的部署提供支持,这是我们与 Google Cloud 合作伙伴关系的初步成果。

你也可以通过 Vertex AI Model Garden 直接访问 Gemma。

要在 Hugging Face 上微调 Gemma 模型,请访问 模型页面 并点击 训练 -> Google Cloud。这将引导你进入 Google Cloud Console,在那里你可以在 Vertex AI 或 GKE 上访问笔记本,以在这些平台上微调 Gemma。

这些集成是我们 与 Google 合作伙伴关系成果的一部分,未来还会有更多精彩内容发布,敬请期待!

与推理端点集成

你可以在 Hugging Face 的 推理端点 上部署 Gemma,该端点使用文本生成推理作为后端。文本生成推理 是由 Hugging Face 开发的可用于生产环境的推理容器,旨在简化大型语言模型的部署。它支持连续批处理、令牌流式传输、多 GPU 张量并行加速推理,并提供生产就绪的日志记录和跟踪功能。

要部署 Gemma 模型,请访问 HF Hub 模型页面 并点击 部署 -> 推理端点。有关 使用 Hugging Face 推理端点部署 LLM的更多信息,请参阅我们之前的博客文章。推理端点通过文本生成推理支持 消息 API,使你可以通过简单地更换 URL 从其他封闭模型切换到开放模型。

from openai import OpenAI# initialize the client but point it to TGI
client = OpenAI(base_url="<ENDPOINT_URL>" + "/v1/",  # replace with your endpoint urlapi_key="<HF_API_TOKEN>",  # replace with your token
)
chat_completion = client.chat.completions.create(model="tgi",messages=[{"role": "user", "content": "Why is open-source software important?"},],stream=True,max_tokens=500
)# iterate and print stream
for message in chat_completion:print(message.choices[0].delta.content, end="")

使用 🤗 TRL 进行微调

在消费级 GPU 上训练大型语言模型既是技术上的挑战,也是计算上的挑战。本节将介绍 Hugging Face 生态系统中可用的工具,这些工具可以帮助你高效地在消费级 GPU 上训练 Gemma。

一个微调 Gemma 的示例命令如下。我们利用 4 位量化和 QLoRA(一种参数效率微调技术)来减少内存使用,目标是所有注意力块的线性层。值得注意的是,与密集型 Transformer 不同,MLP 层(多层感知器层)因其稀疏性不适合与 PEFT(参数效率微调)技术结合使用。

首先,安装 🤗 TRL 的最新版本并克隆仓库以获取 训练脚本:

pip install -U transformers trl peft bitsandbytes
git clone https://github.com/huggingface/trl
cd trl

然后运行脚本:

accelerate launch --config_file examples/accelerate_configs/multi_gpu.yaml --num_processes=1 \examples/scripts/sft.py \--model_name google/gemma-7b \--dataset_name OpenAssistant/oasst_top1_2023-08-25 \--per_device_train_batch_size 2 \--gradient_accumulation_steps 1 \--learning_rate 2e-4 \--save_steps 20_000 \--use_peft \--lora_r 16 --lora_alpha 32 \--lora_target_modules q_proj k_proj v_proj o_proj \--load_in_4bit \--output_dir gemma-finetuned-openassistant

在单个 A10G GPU 上,这个训练过程大约需要 9 小时。通过调整 --num_processes 参数为你可用的 GPU 数量,可以实现并行化训练,从而缩短训练时间。

其他资源

  • Hub 上的模型
  • 开放 LLM 排行榜
  • Hugging Chat 上的聊天演示
  • Gemma 官方博客
  • Gemma 产品页面
  • Vertex AI 模型花园链接
  • Google Notebook 教程

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728634.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux——文件标识符

目录 一、文件基础 二、常见的C语言文件接口 三、系统文件接口 四、理解语言与系统文件操作的关系 五、如何理解一切皆文件 六、文件标识符再理解 一、文件基础 一个空文件&#xff0c;也会占用磁盘空间&#xff0c;这是因为文件不仅仅有存放在里面的内容&#xff0c;还…

Chapter20-Ideal gases-CIE课本要点摘录、总结(编辑中)

20.1 Particles of a gas Brownian motion Fast modules 速率的数值大概了解下&#xff1a; average speed of the molecules:400m/s speed of sound:approximately 330m/s at STP&#xff08;standard temperature and pressure&#xff09; Standard Temperature and Pres…

ROS 2基础概念#5:执行器(Executor)| ROS 2学习笔记

在ROS 2中&#xff0c;Executor是一个核心概念&#xff0c;负责管理节点&#xff08;Node&#xff09;中的回调函数&#xff0c;如订阅消息的回调、服务请求的回调、定时器回调等。Executor决定了何时以及如何执行这些回调&#xff0c;从而在ROS 2系统中实现异步编程。 ROS 2 …

七彩虹八渐变 外贸建站公司wordpress模板

进出口水果wordpress外贸模板 漂亮水果wordpress外贸模板&#xff0c;做水果进出品生意的外贸公司自建站官网模板。 https://www.jianzhanpress.com/?p3516 玩具wordpress外贸模板 简洁玩具wordpress外贸模板&#xff0c;适合做跨境电商外贸公司使用的wordpres外贸s网站主题…

FPGA 按键控制串口发送

按键消抖 消抖时间一般为10ms&#xff0c;我使用的板子是ACX720&#xff0c;晶振为50MHZ&#xff0c;20ns为一周期。 状态机 模块设计 设计文件 timescale 1ns / 1ps // // Company: // Engineer: // // Create Date: 2023/01/11 12:18:36 // Design Name: // Module Name…

(学习总结)如何使用ChatGPT API训练自定义知识库

第一步&#xff1a; 安装OpenAI、GPT Index、PyPDF2和Gradio库 pip install openai pip install gpt_index pip install PyPDF2 pip install gradio 第二步&#xff1a;用VScode代码编辑器写app.py代码 记得替换api密钥 from llama_index import SimpleDirectoryReader, …

纯css实现太极八卦图

感觉最近好像闯鬼了&#xff0c;赶紧写个八卦图避避邪&#xff0c;开玩笑了&#xff0c;不废话&#xff0c;上菜&#xff0c;看效果上代码。 效果 代码&#xff0c;你们都是大佬&#xff0c;这里就不解释代码了 &#xff08;hover会转动喔&#xff09;。 <!DOCTYPE html&g…

LabVIEW智能Modbus监控系统

LabVIEW智能Modbus监控系统 在自动化和信息化迅速发展下&#xff0c;传统的监控系统已无法满足现代工业对于数据通讯和处理的高效率和高可靠性要求。为了解决这一问题&#xff0c;设计了一套基于LabVIEW的智能Modbus监控系统。该系统利用LabVIEW的图形化编程环境和Modbus协议的…

数字孪生10个技术栈:数据处理的六步骤,以获得可靠数据。

一、什么是数据处理 在数字孪生中&#xff0c;数据处理是指对采集到的实时或历史数据进行整理、清洗、分析和转化的过程。数据处理是数字孪生的基础&#xff0c;它将原始数据转化为有意义的信息&#xff0c;用于模型构建、仿真和决策支持。 数据处理是为了提高数据质量、整合数…

深入理解Servlet

目录&#xff1a; ServletWeb开发历史Servlet简介Servlet技术特点Servlet在应用程序中的位置Tomcat运行过程Servlet继承结构Servlet生命周期Servlet处理请求的原理Servlet的作用HttpServletRequest对象HttpServletResponse对象ServletContext对象ServletConfig对象Cookie对象与…

SpringBoot快速入门(介绍,创建的3种方式,Web分析)

目录 一、SpringBoot介绍 二、SpringBootWeb快速入门 创建 定义请求处理类 运行测试 三、Web分析 一、SpringBoot介绍 我们可以打开Spring的官网(Spring | Home)&#xff0c;去看一下Spring的简介&#xff1a;Spring makes Java simple。 Spring发展到今天已经形成了一种…

Android 多桌面图标启动, 爬坑点击打开不同页面

备注 &#xff1a; MainActivity 正常带界面的UI MainActivityBt 和 MainActivityUsb 是透明的&#xff0c;即 android:theme"style/TranslucentTheme" ###场景1:只有MainActivity 设置成&#xff1a;android:launchMode"singleTask" 点击顺序&#xff1…

ThreadLocal :在 Java中隱匿的魔法之力

优质博文&#xff1a;IT-BLOG-CN ThreadLocal 并不是一个Thread&#xff0c;而是 ThreadLocalVariable(线程局部变量)。也许把它命名为 ThreadLocalVar更加合适。线程局部变量就是为每一个使用该变量的线程都提供一个变量值的副本&#xff0c;是 Java中一种较为特殊的线程绑定机…

MySQL--优化(索引--聚簇和非聚簇索引)

MySQL–优化&#xff08;索引–聚簇和非聚簇索引&#xff09; 定位慢查询SQL执行计划索引 存储引擎索引底层数据结构聚簇和非聚簇索引索引创建原则索引失效场景 SQL优化经验 一、聚簇索引 聚簇索引&#xff1a;将数据存储与索引放到了一块&#xff0c;索引结构的叶子节点保存…

01-环境搭建、SpringCloud微服务-黑马头条

环境搭建、SpringCloud微服务(注册发现、服务调用、网关) 1)课程对比 2)项目概述 2.1)能让你收获什么 2.2)项目课程大纲 2.3)项目概述 随着智能手机的普及&#xff0c;人们更加习惯于通过手机来看新闻。由于生活节奏的加快&#xff0c;很多人只能利用碎片时间来获取信息&…

数据开发 - 面经(已OC) - 北京中海通

投递流程&#xff1a; 2023.12.28 Boss 打招呼 2024.1.3 约面 2024.1.4 上午面试 &#xff08;手机端腾讯会议&#xff09; 2024.1.5 上午 通知面试通过 腾讯会议手机端无法和录影机同时运行&#xff0c;录音无效&#xff0c;之后注意使用电脑面试 面试流程&#xff1a;首…

搜维尔科技:3D Systems Geomagic Design X 逆向工程软件

产品概述 3D Systems Geomagic Design X 是全面的逆向工程软件 GeomagicoDesign XTM是全面的逆向工程软件&#xff0c;它结合了基于特征的CAD数模与三维扫描数据处理&#xff0c;使您能创建出可编辑、基于特征的CAD数模&#xff0c;并与您现有的CAD软件兼容。 拓展您的设计能…

两两交换链表中的节点+力扣

题目 题目链接 . - 力扣&#xff08;LeetCode&#xff09; 题目描述 代码实现 class Solution { public:ListNode* swapPairs(ListNode* head) {if(head nullptr || head->next nullptr) return head;ListNode *tmpHead swapPairs(head->next->next);ListNode …

Spring Boot异常处理和单元测试

1.SpringBoot异常处理 1.1.自定义错误页面 SpringBoot默认的处理异常的机制&#xff1a;SpringBoot 默认的已经提供了一套处理异常的机制。一旦程序中出现了异常 SpringBoot 会向/error 的 url 发送请求。在 springBoot 中提供了一个叫 BasicErrorController 来处理/error 请…

Qt/C++音视频开发68-检查是否含有B帧/转码推流/拉流显示/监控拉流推流/海康大华宇视监控

一、前言 为什么需要判断视频文件是否含有B帧&#xff0c;这个在推流的时候很容易遇到这个问题&#xff0c;一般来说&#xff0c;没有B帧的视频文件&#xff0c;解码后的数据帧pts和dts都是顺序递增的&#xff0c;而有B帧的则未必&#xff0c;可能有些需要先解码后面显示&…