OpenCV 06(图像的基本变换)

一、图像的基本变换

1.1 图像的放大与缩小

- resize(src, dsize, dst, fx, fy, interpolation)

  - src: 要缩放的图片
  - dsize: 缩放之后的图片大小, 元组和列表表示均可.
  - dst: 可选参数, 缩放之后的输出图片
  - fx, fy: x轴和y轴的缩放比, 即宽度和高度的缩放比.
  - interpolation: 插值算法, 主要有以下几种:
    - INTER_NEAREST, 邻近插值, 速度快, 效果差.
    - INTER_LINEAR, 双线性插值,  使用原图中的4个点进行插值. 默认.
    - INTER_CUBIC, 三次插值, 原图中的16个点.
    - INTER_AREA, 区域插值, 效果最好, 计算时间最长.

 import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')# x,y放大一倍new_dog = cv2.resize(dog,dsize=(800, 800), interpolation=cv2.INTER_NEAREST)cv2.imshow('dog', new_dog)cv2.waitKey(0)cv2.destroyAllWindows()

1.2 图像的翻转

- flip(src, flipCode)
  - flipCode =0 表示上下翻转
  - flipCode >0 表示左右翻转
  - flipCode  <0 上下 + 左右

# 翻转
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')new_dog = cv2.flip(dog, flipCode=-1)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.3 图像的旋转

- rotate(img, rotateCode)
  - ROTATE_90_CLOCKWISE 90度顺时针
  - ROTATE_180 180度
  - ROTATE_90_COUNTERCLOCKWISE 90度逆时针

# 旋转
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')new_dog = cv2.rotate(dog, rotateCode=cv2.cv2.ROTATE_90_COUNTERCLOCKWISE)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.4 仿射变换之图像平移

- 仿射变换是图像旋转, 缩放, 平移的总称.具体的做法是通过一个矩阵和和原图片坐标进行计算, 得到新的坐标, 完成变换. 所以关键就是这个矩阵. 

- warpAffine(src, M, dsize, flags, mode, value)

- M:变换矩阵

- dsize: 输出图片大小

- flag: 与resize中的插值算法一致

- mode: 边界外推法标志

- value: 填充边界值

- 平移矩阵

 # 仿射变换之平移import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shapeM = np.float32([[1, 0, 100], [0, 1, 0]])# 注意opencv中是先宽度, 再高度new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

1.5 仿射变换之获取变换矩阵

仿射变换的难点就是计算变换矩阵, OpenCV提供了计算变换矩阵的API

- getRotationMatrix2D(center, angle, scale)
  - center 中心点 , 以图片的哪个点作为旋转时的中心点.
  - angle 角度: 旋转的角度, 按照逆时针旋转.
  - scale 缩放比例: 想把图片进行什么样的缩放.

# 仿射变换之平移
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shape
# M = np.float32([[1, 0, 100], [0, 1, 0]])# 注意旋转的角度为逆时针.
# M = cv2.getRotationMatrix2D((100, 100), 15, 1.0)
# 以图像中心点旋转
M = cv2.getRotationMatrix2D((w/2, h/2), 15, 1.0)
# 注意opencv中是先宽度, 再高度
new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)
cv2.waitKey(0)
cv2.destroyAllWindows()

- getAffineTransform(src[], dst[]) 通过三点可以确定变换后的位置, 相当于解方程, 3个点对应三个方程, 能解出偏移的参数和旋转的角度.

  - src原目标的三个点
  - dst对应变换后的三个点

 # 通过三个点来确定M# 仿射变换之平移import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shape# 一般是横向和纵向的点, 所以一定会有2个点横坐标相同, 2个点纵坐标相同src = np.float32([[200, 100], [300, 100], [200, 300]])dst = np.float32([[100, 150], [360, 200], [280, 120]])M = cv2.getAffineTransform(src, dst)# 注意opencv中是先宽度, 再高度new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

1.6 透视变换

透视变换就是将一种坐标系变换成另一种坐标系. 简单来说可以把一张"斜"的图变"正".

- warpPerspective(img, M, dsize,....)

- 对于透视变换来说, M是一个3 * 3 的矩阵.

- getPerspectiveTransform(src, dst) 获取透视变换的变换矩阵, 需要4个点, 即图片的4个角. 

# 透视变换import cv2import numpy as np#导入图片img = cv2.imread('./123.png')print(img.shape)src = np.float32([[100, 1100], [2100, 1100], [0, 4000], [2500, 3900]])dst = np.float32([[0, 0], [2300, 0], [0, 3000], [2300, 3000]])M = cv2.getPerspectiveTransform(src, dst)new = cv2.warpPerspective(img, M, (2300, 3000))cv2.namedWindow('img', cv2.WINDOW_NORMAL)cv2.resizeWindow('img', 640, 480)cv2.namedWindow('new', cv2.WINDOW_NORMAL)cv2.resizeWindow('new', 640, 480)cv2.imshow('img', img)cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ChatGPT在虚拟旅游和文化体验中的潜在作用如何?

ChatGPT在虚拟旅游和文化体验中具有潜在的重要作用。虚拟旅游是一种数字化的旅行方式&#xff0c;使人们可以在不离开家门的情况下探索世界各地的地点、文化和景观。ChatGPT可以通过提供信息、交互性和定制化的建议&#xff0c;增强虚拟旅游的体验&#xff0c;同时也可以用于文…

代码随想录31|452. 用最少数量的箭引爆气球,435. 无重叠区间,763.划分字母区间

452. 用最少数量的箭引爆气球 链接地址 class Solution { private:static bool cmp(const vector<int>& a, const vector<int>& b) {return a[0] < b[0];//从小到大排序} public:int findMinArrowShots(vector<vector<int>>& points) {…

stable diffusion实践操作-大模型介绍-SDXL1大模型

系列文章目录 大家移步下面链接中&#xff0c;里面详细介绍了stable diffusion的原理&#xff0c;操作等&#xff08;本文只是下面系列文章的一个写作模板&#xff09;。 stable diffusion实践操作 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生…

java面试题

一、java面试题第一天 1.java的特点 **Java是一门面向对象的编程。**面向对象就是我们将对应的操作都封装成对应的api,就是所谓的方法&#xff0c;提供给别人使用&#xff08;面向过程就是所有的方法&#xff0c;api由自己编写&#xff09; java具有平台独立性和移植性。 jav…

2023-9-8 求组合数(三)

题目链接&#xff1a;求组合数 III #include <iostream> #include <algorithm>using namespace std;typedef long long LL;int p;int qmi(int a, int k) {int res 1;while(k){if(k & 1) res (LL) res * a % p;k >> 1;a (LL) a * a % p;}return res; }…

FAT32文件系统f_mkfs函数详解

1.f_mkfs参数 参数path&#xff1a;要挂载/卸载的逻辑驱动器号;使用设备根路径表示。 参数opt&#xff1a;系统的格式&#xff0c;如图所示&#xff0c;选择FM_FAT32即可&#xff0c;选择其他的可能无法格式化。 参数au&#xff1a;每簇的字节数&#xff0c;以字节为单位&#…

后端面试话术集锦第 十一 篇:mybatis面试话术

这是后端面试集锦第十一篇博文——mybatis面试话术❗❗❗ 1. 介绍下mybatis,说说它的优缺点是什么? Mybatis是一个半ORM(对象关系映射)的持久层框架,它内部封装了JDBC,开发时只需要关注SQL语句本身,不需要花费精力去处理加载驱动、创建连接、创建statement等繁杂的过程…

安全模型中的4个P

引言&#xff1a;在安全模型中&#xff0c;经常会碰到PDR,PPDR&#xff0c;IPDRR&#xff0c;CARTA-PPDR等模型&#xff0c;其中的P&#xff0c;是predict&#xff1f;是prevent&#xff1f;还是protect&#xff1f;还是policy呢&#xff1f; 一、4P字典意思解释 1、predict&a…

使用内网负载机(Linux)执行Jmeter性能测试

一、背景 ​ 在我们工作中有时候会需要使用客户提供的内网负载机进行性能测试&#xff0c;一般在什么情况下我们需要要求客户提供内网负载机进行性能测试呢&#xff1f; 遇到公网环境下性能测试达到了带宽瓶颈。那么这时&#xff0c;我们就需要考虑在内网环境负载机下来执行我们…

中国ui设计师年终工作总结

一、萌芽阶段 记得初次应聘时&#xff0c;我对公司的认识仅仅局限于行业之一&#xff0c;对UI设计师一职的认识也局限于从事相对单纯的界面的设计创意和美术执行工作。除此之外&#xff0c;便一无所知了。所以&#xff0c;试用期中如何去认识、了解并熟悉自己所从事的行业&…

【Sword系列】Vulnhub靶机HACKADEMIC: RTB1 writeup

靶机介绍 官方下载地址&#xff1a;https://www.vulnhub.com/entry/hackademic-rtb1,17/ 需要读取靶机的root目录下key.txt 运行环境&#xff1a; 虚拟机网络设置的是NAT模式 靶机&#xff1a;IP地址&#xff1a;192.168.233.131 攻击机&#xff1a;kali linux&#xff0c;IP地…

Python 日期和时间

老规矩&#xff0c;先上官方文档链接&#xff1a;dateime 以及 格式化说明 from datetime import datetimenow datetime.now() print(now) print(f"{now:%Y-%m-%d %H:%M:%S.%f}") print(now.date()) print(now.time())# 时间戳是 float 类型的秒数 #print(dir(now.…

哭了,python自动化办公,终于支持 Mac下载了

想了解更多精彩内容&#xff0c;快来关注程序员晚枫 大家好&#xff0c;这里是程序员晚枫&#xff0c;小红薯/小破站也叫这个名。 在我的主页发布的免费课程&#xff1a;给小白的《50讲Python自动化办公》&#xff0c;一直在更新中&#xff0c;昨晚12点多&#xff0c;有朋友在…

类,这一篇文章你就懂了!

提示&#xff1a;本文主要介绍C中类相关知识及基础概念总结 渺渺何所似&#xff0c;天地一沙鸥 文章目录 一、面向对象与面向过程二、类的框架知识2.1 类的定义2.2 类的封装性2.2.1 访问限定符2.2.2 封装的概念以及实现 2.3 类的作用域及实例化2.4 类中this指针 三、六大默认成…

网络分层的真实含义

复杂的程序都要分层&#xff0c;这是程序设计的要求。比如&#xff0c;复杂的电商还会分数据库层、缓存层、Compose 层、Controller 层和接入层&#xff0c;每一层专注做本层的事情。 当一个网络包从一个网口经过的时候&#xff0c;你看到了&#xff0c;首先先看看要不要请进来…

【ALM工具软件】上海道宁与Perforce为您带来用于整个生命周期的应用程序生命周期管理软件

Helix ALM是 用于整个生命周期的 应用程序生命周期管理的ALM软件 具有专用于 需求管理&#xff08;Helix RM&#xff09;、测试用例管理&#xff08;Helix TCM&#xff09; 问题管理&#xff08;Helix IM&#xff09;的功能模块 Helix ALM提供了 无与伦比的可追溯性 您将…

uniapp 冒泡

--------------------------------------------------------------------------------------------------------------------------------- uniapp <template><!-- 显示排序结果样式 --><view class"content"><view class"text-area&qu…

Fiddler如何比较两个接口请求?

进行APP测试时&#xff0c;往往会出现Android和iOS端同一请求&#xff0c;但执行结果不同&#xff0c;这通常是接口请求内容差异所致。 我习惯于用Fiddler抓包&#xff0c;那此时应该如何定位问题呢&#xff1f; 分别把Android和iOS的接口请求另存为TXT文件&#xff0c;然后用…

BMS电池管理系统——电芯需求数据(三)

BMS电池管理系统 文章目录 BMS电池管理系统前言一、有什么基础数据二、基础数据分析1.充放电的截至电压2.SOC-OCV关系表3.充放电电流限制表4.充放电容量特性5.自放电率 总结 前言 在新能源产业中电芯的开发也占有很大部分&#xff0c;下面我们就来看一下电芯的需求数据有哪些 …

Android ImageView详解

scaleType属性详解 在 Android 中&#xff0c;ImageView 控件的 scaleType 属性用于指定图像在 ImageView 内部的缩放和对齐方式。scaleType 属性可以帮助你控制图像的显示方式&#xff0c;以适应 ImageView 的尺寸或实现其他特定的显示效果。以下是常见的 scaleType 属性值和…