OpenCV 06(图像的基本变换)

一、图像的基本变换

1.1 图像的放大与缩小

- resize(src, dsize, dst, fx, fy, interpolation)

  - src: 要缩放的图片
  - dsize: 缩放之后的图片大小, 元组和列表表示均可.
  - dst: 可选参数, 缩放之后的输出图片
  - fx, fy: x轴和y轴的缩放比, 即宽度和高度的缩放比.
  - interpolation: 插值算法, 主要有以下几种:
    - INTER_NEAREST, 邻近插值, 速度快, 效果差.
    - INTER_LINEAR, 双线性插值,  使用原图中的4个点进行插值. 默认.
    - INTER_CUBIC, 三次插值, 原图中的16个点.
    - INTER_AREA, 区域插值, 效果最好, 计算时间最长.

 import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')# x,y放大一倍new_dog = cv2.resize(dog,dsize=(800, 800), interpolation=cv2.INTER_NEAREST)cv2.imshow('dog', new_dog)cv2.waitKey(0)cv2.destroyAllWindows()

1.2 图像的翻转

- flip(src, flipCode)
  - flipCode =0 表示上下翻转
  - flipCode >0 表示左右翻转
  - flipCode  <0 上下 + 左右

# 翻转
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')new_dog = cv2.flip(dog, flipCode=-1)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.3 图像的旋转

- rotate(img, rotateCode)
  - ROTATE_90_CLOCKWISE 90度顺时针
  - ROTATE_180 180度
  - ROTATE_90_COUNTERCLOCKWISE 90度逆时针

# 旋转
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')new_dog = cv2.rotate(dog, rotateCode=cv2.cv2.ROTATE_90_COUNTERCLOCKWISE)
cv2.imshow('dog', new_dog)
cv2.waitKey(0)
cv2.destroyAllWindows()

1.4 仿射变换之图像平移

- 仿射变换是图像旋转, 缩放, 平移的总称.具体的做法是通过一个矩阵和和原图片坐标进行计算, 得到新的坐标, 完成变换. 所以关键就是这个矩阵. 

- warpAffine(src, M, dsize, flags, mode, value)

- M:变换矩阵

- dsize: 输出图片大小

- flag: 与resize中的插值算法一致

- mode: 边界外推法标志

- value: 填充边界值

- 平移矩阵

 # 仿射变换之平移import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shapeM = np.float32([[1, 0, 100], [0, 1, 0]])# 注意opencv中是先宽度, 再高度new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

1.5 仿射变换之获取变换矩阵

仿射变换的难点就是计算变换矩阵, OpenCV提供了计算变换矩阵的API

- getRotationMatrix2D(center, angle, scale)
  - center 中心点 , 以图片的哪个点作为旋转时的中心点.
  - angle 角度: 旋转的角度, 按照逆时针旋转.
  - scale 缩放比例: 想把图片进行什么样的缩放.

# 仿射变换之平移
import cv2
import numpy as np#导入图片
dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shape
# M = np.float32([[1, 0, 100], [0, 1, 0]])# 注意旋转的角度为逆时针.
# M = cv2.getRotationMatrix2D((100, 100), 15, 1.0)
# 以图像中心点旋转
M = cv2.getRotationMatrix2D((w/2, h/2), 15, 1.0)
# 注意opencv中是先宽度, 再高度
new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)
cv2.waitKey(0)
cv2.destroyAllWindows()

- getAffineTransform(src[], dst[]) 通过三点可以确定变换后的位置, 相当于解方程, 3个点对应三个方程, 能解出偏移的参数和旋转的角度.

  - src原目标的三个点
  - dst对应变换后的三个点

 # 通过三个点来确定M# 仿射变换之平移import cv2import numpy as np#导入图片dog = cv2.imread('./dog.jpeg')h, w, ch = dog.shape# 一般是横向和纵向的点, 所以一定会有2个点横坐标相同, 2个点纵坐标相同src = np.float32([[200, 100], [300, 100], [200, 300]])dst = np.float32([[100, 150], [360, 200], [280, 120]])M = cv2.getAffineTransform(src, dst)# 注意opencv中是先宽度, 再高度new = cv2.warpAffine(dog, M, (w, h))cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

1.6 透视变换

透视变换就是将一种坐标系变换成另一种坐标系. 简单来说可以把一张"斜"的图变"正".

- warpPerspective(img, M, dsize,....)

- 对于透视变换来说, M是一个3 * 3 的矩阵.

- getPerspectiveTransform(src, dst) 获取透视变换的变换矩阵, 需要4个点, 即图片的4个角. 

# 透视变换import cv2import numpy as np#导入图片img = cv2.imread('./123.png')print(img.shape)src = np.float32([[100, 1100], [2100, 1100], [0, 4000], [2500, 3900]])dst = np.float32([[0, 0], [2300, 0], [0, 3000], [2300, 3000]])M = cv2.getPerspectiveTransform(src, dst)new = cv2.warpPerspective(img, M, (2300, 3000))cv2.namedWindow('img', cv2.WINDOW_NORMAL)cv2.resizeWindow('img', 640, 480)cv2.namedWindow('new', cv2.WINDOW_NORMAL)cv2.resizeWindow('new', 640, 480)cv2.imshow('img', img)cv2.imshow('new', new)cv2.waitKey(0)cv2.destroyAllWindows()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72858.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

stable diffusion实践操作-大模型介绍-SDXL1大模型

系列文章目录 大家移步下面链接中&#xff0c;里面详细介绍了stable diffusion的原理&#xff0c;操作等&#xff08;本文只是下面系列文章的一个写作模板&#xff09;。 stable diffusion实践操作 提示&#xff1a;写完文章后&#xff0c;目录可以自动生成&#xff0c;如何生…

2023-9-8 求组合数(三)

题目链接&#xff1a;求组合数 III #include <iostream> #include <algorithm>using namespace std;typedef long long LL;int p;int qmi(int a, int k) {int res 1;while(k){if(k & 1) res (LL) res * a % p;k >> 1;a (LL) a * a % p;}return res; }…

FAT32文件系统f_mkfs函数详解

1.f_mkfs参数 参数path&#xff1a;要挂载/卸载的逻辑驱动器号;使用设备根路径表示。 参数opt&#xff1a;系统的格式&#xff0c;如图所示&#xff0c;选择FM_FAT32即可&#xff0c;选择其他的可能无法格式化。 参数au&#xff1a;每簇的字节数&#xff0c;以字节为单位&#…

安全模型中的4个P

引言&#xff1a;在安全模型中&#xff0c;经常会碰到PDR,PPDR&#xff0c;IPDRR&#xff0c;CARTA-PPDR等模型&#xff0c;其中的P&#xff0c;是predict&#xff1f;是prevent&#xff1f;还是protect&#xff1f;还是policy呢&#xff1f; 一、4P字典意思解释 1、predict&a…

使用内网负载机(Linux)执行Jmeter性能测试

一、背景 ​ 在我们工作中有时候会需要使用客户提供的内网负载机进行性能测试&#xff0c;一般在什么情况下我们需要要求客户提供内网负载机进行性能测试呢&#xff1f; 遇到公网环境下性能测试达到了带宽瓶颈。那么这时&#xff0c;我们就需要考虑在内网环境负载机下来执行我们…

中国ui设计师年终工作总结

一、萌芽阶段 记得初次应聘时&#xff0c;我对公司的认识仅仅局限于行业之一&#xff0c;对UI设计师一职的认识也局限于从事相对单纯的界面的设计创意和美术执行工作。除此之外&#xff0c;便一无所知了。所以&#xff0c;试用期中如何去认识、了解并熟悉自己所从事的行业&…

【Sword系列】Vulnhub靶机HACKADEMIC: RTB1 writeup

靶机介绍 官方下载地址&#xff1a;https://www.vulnhub.com/entry/hackademic-rtb1,17/ 需要读取靶机的root目录下key.txt 运行环境&#xff1a; 虚拟机网络设置的是NAT模式 靶机&#xff1a;IP地址&#xff1a;192.168.233.131 攻击机&#xff1a;kali linux&#xff0c;IP地…

哭了,python自动化办公,终于支持 Mac下载了

想了解更多精彩内容&#xff0c;快来关注程序员晚枫 大家好&#xff0c;这里是程序员晚枫&#xff0c;小红薯/小破站也叫这个名。 在我的主页发布的免费课程&#xff1a;给小白的《50讲Python自动化办公》&#xff0c;一直在更新中&#xff0c;昨晚12点多&#xff0c;有朋友在…

类,这一篇文章你就懂了!

提示&#xff1a;本文主要介绍C中类相关知识及基础概念总结 渺渺何所似&#xff0c;天地一沙鸥 文章目录 一、面向对象与面向过程二、类的框架知识2.1 类的定义2.2 类的封装性2.2.1 访问限定符2.2.2 封装的概念以及实现 2.3 类的作用域及实例化2.4 类中this指针 三、六大默认成…

网络分层的真实含义

复杂的程序都要分层&#xff0c;这是程序设计的要求。比如&#xff0c;复杂的电商还会分数据库层、缓存层、Compose 层、Controller 层和接入层&#xff0c;每一层专注做本层的事情。 当一个网络包从一个网口经过的时候&#xff0c;你看到了&#xff0c;首先先看看要不要请进来…

【ALM工具软件】上海道宁与Perforce为您带来用于整个生命周期的应用程序生命周期管理软件

Helix ALM是 用于整个生命周期的 应用程序生命周期管理的ALM软件 具有专用于 需求管理&#xff08;Helix RM&#xff09;、测试用例管理&#xff08;Helix TCM&#xff09; 问题管理&#xff08;Helix IM&#xff09;的功能模块 Helix ALM提供了 无与伦比的可追溯性 您将…

Fiddler如何比较两个接口请求?

进行APP测试时&#xff0c;往往会出现Android和iOS端同一请求&#xff0c;但执行结果不同&#xff0c;这通常是接口请求内容差异所致。 我习惯于用Fiddler抓包&#xff0c;那此时应该如何定位问题呢&#xff1f; 分别把Android和iOS的接口请求另存为TXT文件&#xff0c;然后用…

BMS电池管理系统——电芯需求数据(三)

BMS电池管理系统 文章目录 BMS电池管理系统前言一、有什么基础数据二、基础数据分析1.充放电的截至电压2.SOC-OCV关系表3.充放电电流限制表4.充放电容量特性5.自放电率 总结 前言 在新能源产业中电芯的开发也占有很大部分&#xff0c;下面我们就来看一下电芯的需求数据有哪些 …

JavaEE初阶(1)(冯诺依曼体系、CPU、CPU基本原理、如何衡量CPU的好坏?指令、操作系统、操作系统“内核”)

目录 冯诺依曼体系&#xff08;Von Neumann Architecture&#xff09; CPU CPU基本原理&#xff1a; 如何衡量CPU的好坏&#xff1f; 1、主频&#xff08;时钟速度&#xff09;&#xff1a; 2、核心数&#xff1a; 指令 操作系统 操作系统“内核” 冯诺依曼体系&#x…

运动耳机哪种好、运动戴的蓝牙耳机推荐

作为一名运动爱好者&#xff0c;自然要有一款专业的运动耳机&#xff0c;运动耳机的重要作用就是它能帮我们缓解枯燥运动时的乏味&#xff0c;还能提高运动锻炼的效果。热爱运动的我&#xff0c;最喜欢就是运动音乐随行了&#xff0c;在用过众多蓝牙耳机之后&#xff0c;才明白…

海外ASO优化之如何优化游戏应用

如果我们发布了一款手机游戏或者管理了一款手机游戏&#xff0c;那么需要确保我们的手机游戏对合适的人可见&#xff0c;目的是增加应用的下载量。 1、优化游戏元数据的关键词。 Apple和Google在应用商店中为我们提供有限的空间&#xff0c;来描述手机游戏及其优势。我们需要使…

基于YOLOv8和WiderFace数据集的人脸目标检测系统(PyTorch+Pyside6+YOLOv8模型)

摘要&#xff1a;基于YOLOv8和WiderFace数据集的人脸目标检测系统可用于日常生活中检测与定位人脸目标&#xff0c;利用深度学习算法可实现图片、视频、摄像头等方式的目标检测&#xff0c;另外本系统还支持图片、视频等格式的结果可视化与结果导出。本系统采用YOLOv8目标检测算…

【KRouter】一个简单且轻量级的Kotlin Routing框架

【KRouter】一个简单且轻量级的Kotlin Routing框架 KRouter&#xff08;Kotlin-Router&#xff09;是一个简单而轻量级的Kotlin路由框架。 具体来说&#xff0c;KRouter是一个通过URI来发现接口实现类的框架。它的使用方式如下&#xff1a; val homeScreen KRouter.route&l…

OpenCV(三十二):轮廓检测

1.轮廓概念介绍 在计算机视觉和图像处理领域中&#xff0c;轮廓是指在图像中表示对象边界的连续曲线。它是由一系列相邻的点构成的&#xff0c;这些点在边界上连接起来形成一个封闭的路径。 轮廓层级&#xff1a; 轮廓层级&#xff08;Contour Hierarchy&#xff09;是指在包含…

雅思 《九分达人》阅读练习(二)

目录 雅思阅读练习 《九分达人》test3 paragraph3 1.单词含义要记准确&#xff0c;敏感度要上来。 2.找准定位&#xff0c;之后理解句子大致含义。 说说关于判断题的做题方法 关于“承认”有哪些单词 同替词汇 think 可以用什么其他单词来替换 单词 一些疑问 I have…