详解动态规划(算法村第十九关青铜挑战)

不同路径

62. 不同路径 - 力扣(LeetCode)

一个机器人位于一个 m x n 网格的左上角 (起始点在下图中标记为 “Start” )。

机器人每次只能向下或者向右移动一步。机器人试图达到网格的右下角(在下图中标记为 “Finish” )。

问总共有多少条不同的路径?

递归

递归的含义就是处理方法不变,但是问题的规模减少。

public int uniquePaths(int m, int n)
{//如果只剩一行或者一列,那只有一个方向,一条路径了if (m == 1 || n == 1)return 1;//往右走一步,问题规模缩小成 m * (n-1) 的网格//往下走一步,问题规模缩小成 (m-1) * n 的网格return uniquePaths(m, n - 1) + uniquePaths(m - 1, n);
}

但在此题中普通的递归解法超时,原因是存在大量重复计算。

在这里插入图片描述

例如,不管是从(0,1)还是(1,0)从来到(1,1),接下来从(1,1)到终点都会有2种走法,不必每次都重新计算。而普通的递归只能一遍又一遍地计算从(1,1)到终点有多少种走法。

利用二维数组进行记忆化搜索

在这里插入图片描述

每个格子的数字表示从起点开始到达当前位置的路径数,计算总路径时可以先查一下记录,如果有记录就直接读,没有再计算,这样就可以避免大量重复计算,这就是记忆化搜索

  • 第一行和第一列都是1。
  • 其他格子的值 = 左侧格子的值 + 上方格子格子的值。

如图中的4,由上面的1和左侧的3计算而来,15由上侧的5和左侧的10计算而来。

public int uniquePaths_2(int m, int n)
{int[][] record = new int[m][n];record[0][0] = 1;for (int row = 0; row < m; ++row)for (int col = 0; col < n; ++col){if (row > 0 && col > 0)record[row][col] = record[row - 1][col] + record[row][col - 1];else if (col > 0)	//第一行格子record[row][col] = record[row][col - 1];else if(row > 0)	//第一列格子record[row][col] = record[row - 1][col];}return record[m - 1][n - 1];
}

将二维数组优化为一维数组

第一步,用1填充一维数组。

在这里插入图片描述

第二步,从头遍历数组,除了第一个位置,位置的新值 = 前一个位置的值 + 位置的原始值 。其实,在二维数组中,位置的原始值就在位置新值的上方。

在这里插入图片描述

重复第二步

在这里插入图片描述

把三个一维数组拼接起来,发现恰好跟上面的二维数组一致:

在这里插入图片描述

所以,路径总数就是一维数组最后一个元素的值。

这种反复更新的一维数组就是滚动数组。

public int uniquePaths_3(int m, int n)
{int[] dp = new int[n];Arrays.fill(dp,1);for (int row = 1; row < m; row++)for (int col = 1; col < n; col++)dp[col] = dp[col - 1] + dp[col];return dp[n - 1];
}

总结

这个题目涵盖了dp的多个方面,比如重复子问题(递归)、记忆化搜索(将已经计算好的结果存入数组,后面用到就直接读取)、滚动数组(二维数组优化为一维数组)。

最小路径和

64. 最小路径和 - 力扣(LeetCode)

给定一个包含非负整数的 *m* x *n* 网格 grid ,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小。

**说明:**每次只能向下或者向右移动一步

public int minPathSum(int[][] grid)
{//逐行遍历,更新 grid 的格值,作为[在方向约束下,从起点到当前格的最小路经和]for (int row = 0; row < grid.length; row++)for (int col = 0; col < grid[row].length; col++){if (row == 0 && col == 0)continue;else if (row == 0)  //只能往右走grid[row][col] = grid[row][col - 1] + grid[row][col];else if (col == 0)  //只能往下走grid[row][col] = grid[row - 1][col] + grid[row][col];else                //从[往右、往下]两个方向挑路径和最小的走grid[row][col] = Math.min(grid[row][col - 1], grid[row - 1][col]) + grid[row][col];}return grid[grid.length - 1][grid[0].length - 1];
}

在这里插入图片描述

我们完全不需要建立 dp 矩阵浪费额外空间,直接遍历 grid 并修改其值即可。因为原 grid 矩阵元素中被覆盖为 dp 元素后(都处于当前遍历点的左上方),不会再被使用到。

三角形最小路径和

120. 三角形最小路径和 - 力扣(LeetCode)

给定一个三角形 triangle ,找出自顶向下的最小路径和。

每一步只能移动到下一行中相邻的结点上。相邻的结点 在这里指的是 下标上一层结点下标 相同或者等于 上一层结点下标 + 1 的两个结点。也就是说,如果正位于当前行的下标 i ,那么下一步可以移动到下一行的下标 ii + 1

示例 1:

输入:triangle = [[2],[3,4],[6,5,7],[4,1,8,3]]
输出:11
解释:如下面简图所示:23 46 5 7
4 1 8 3
自顶向下的最小路径和为 11(即 2 + 3 + 5 + 1 = 11)。

自底向上 dp + 空间优化

public int minimumTotal(List<List<Integer>> triangle)
{int[] dp = new int[triangle.size() + 1];  //多出一格是为了dp数组能够获取triangle最底层的值// 从最底层开始 dpfor (int row = triangle.size() - 1; row >= 0; row--)for (int col = 0; col < row + 1; col++) //第 row 行有 row + 1个数dp[col] = Math.min(dp[col], dp[col + 1]) + triangle.get(row).get(col);//顶点储存着从最底层到顶点的最小路径和return dp[0];
}

理论上可以直接修改triangle的值而不用额外申请空间,但由于triangle的类型是List<List<Integer>>,修改起来很繁琐,故还是选择申请这O(n)dp空间

区分动态规划和回溯

  • 动态规划:只关心当前结果是什么,而不记录结果怎么来的,无法获得完整的路径
  • 回溯:能够获得一条乃至所有满足要求的完整路径。

动态规划题目的三种基本的类型

  1. 计数相关。例如求有多少种方式走到右下角,有多少种方式选出K个数使得…,等等。
  2. 求最大最小值,最多最少。例如最大数字和、最长上升子序列长度、最长公共子序列、最长回文序列等等。
  3. 求存在性。例如取石子游戏,先手是否必胜;能不能选出K个数使得…,等等。

解决问题的模板

  1. 确定状态和子问题。一些题目用逆向思维分析会更容易。
  2. 确定状态转移方程,也就是确定 dp 数组要如何更新状态(或者直接在原数组上改动)。
  3. 确定初始条件和边界情况。
  4. 按照顺序计算。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/728135.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

HubSpot出海CRM智能化营销,创造无限商机

随着企业的全球化发展&#xff0c;营销的挑战也在不断增加。如何有效地管理多样化的市场、提升客户互动和参与度&#xff0c;成为了全球企业必须面对的重要问题。在这一挑战背景下&#xff0c;HubSpot出海CRM的营销自动化功能成为了企业的强大利器&#xff0c;为实施全球化营销…

Java多线程——synchronized、volatile 保障可见性

目录 引出synchronized、volatile 保障可见性Redis冲冲冲——缓存三兄弟&#xff1a;缓存击穿、穿透、雪崩缓存击穿缓存穿透缓存雪崩 总结 引出 Java多线程——synchronized、volatile 保障可见性 synchronized、volatile 保障可见性 原子性&#xff1a;在一次或者多次操作时…

【C++】Unordered_map Unordered_set

在C98中&#xff0c;STL提供了底层为红黑树结构的一系列关联式容器&#xff0c;例如map、set等。它们在搜索数据时效率可达到O(logN)&#xff0c;但最糟糕的情况下搜索需要比较红黑树的高度次&#xff0c;若此时树中的节点非常之多&#xff0c;那么搜索效率就非常不理想。 最理…

python绘制趋势线

趋势线 趋势线是用来显示数据趋势或者预测未来发展方向的一种图形表示方法。在统计学和数据分析中&#xff0c;趋势线通常是通过拟合数据点来找到一条最符合数据整体趋势的直线、曲线或者其他形状。常见的趋势线拟合方法包括线性回归、多项式回归、指数平滑等。 趋势线在金融…

OpenHarmony教程指南—Ability的启动模式

介绍 本示例展示了在一个Stage模型中&#xff0c;实现standard、singleton、specified多种模式场景。 本实例参考开发指南 。 本实例需要使用aa工具 查看应用Ability 模式信息。 效果预览 使用说明 1、standard模式&#xff1a; 1&#xff09;进入首页&#xff0c;点击番茄…

贪心算法详解及机器人运动应用Demo

一、引言 贪心算法是一种在每一步选择中都采取在当前状态下最好或最优&#xff08;即最有利&#xff09;的选择&#xff0c;从而希望导致结果是全局最好或最优的算法。贪心算法在有最优子结构的问题中尤为有效。今天&#xff0c;我们将通过一个机器人运动的Demo来详细解析贪心算…

文心一言眼中的ChatGPT是什么样的

Q: 你好文心一言&#xff0c;请说一说你眼中的chatgpt A: 在我眼中&#xff0c;ChatGPT是一种非常先进和强大的自然语言处理模型&#xff0c;它展示了人工智能技术的显著进步。ChatGPT拥有出色的语言理解和生成能力&#xff0c;能够与用户进行流畅、自然的对话&#xff0c;并尝…

[c/c++] const

const 和 #define 的区别 ? const 和指针一块出现的时候&#xff0c;到底谁不能修改 &#xff1f; const 和 volatile 能同时修饰一个变量吗 ? const 在 c 中的作用 ? 1 const 和 #define 的区别 const 和 #define 的相同点&#xff1a; (1) 常数 const 和 #define 定…

lanqiao:合根植物

题目描述&#xff1a; 代码实现&#xff1a;

私域商业模式创新:消费增值引领企业业绩飙升

大家好&#xff0c;我是吴军&#xff0c;专注于私域商业模式的深度探索。今天&#xff0c;我要分享的是一个极具启发性的客户故事。这家企业&#xff0c;在短短一个月内&#xff0c;业绩飙升至上百万级别&#xff0c;用户活跃度同样瞩目&#xff0c;日均在线用户稳定在八万至十…

华为数通学习笔记(一):数据通信网络基础

华为数通学习笔记 前言&#xff1a;在学习大数据的过程中&#xff0c;我发现很多地方需要用到网络知识点&#xff0c;由于我哥考取了华为数通 HCIE 证书&#xff0c;目前正在一家大公司担任技术负责人&#xff0c;因此借此机会我要向他学习这方面的知识点&#xff0c;希望能够拓…

dbeaver更换下载驱动地址

DBeaver 是一个免费开源的数据库工具&#xff0c;提供对多种数据库系统的支持&#xff0c;包括 MySQL、PostgreSQL、Oracle、SQLite 等。它是一个通用的数据库管理工具&#xff0c;可以帮助用户连接、管理和查询各种类型的数据库。 下载地址 使用dbeaver连接数据库时需要先下…

Linux:kubernetes(k8s)探针LivenessProbe的使用(9)

他做的事情就是当我检测的一个东西他不在规定的时间内存在的话&#xff0c;我就让他重启&#xff0c;这个检测的目标可以是文件或者端口等 我这个是在上一章的基础之上继续操作&#xff0c;我会保留startupProbe探针让后看一下他俩的执行优先的一个效果 Linux&#xff1a;kuber…

洛谷P2233 公交车路线

本题题号特殊&#xff0c;相对简单。 题目描述 在长沙城新建的环城公路上一共有 88 个公交站&#xff0c;分别为 A、B、C、D、E、F、G、H。公共汽车只能够在相邻的两个公交站之间运行&#xff0c;因此你从某一个公交站到另外一个公交站往往要换几次车&#xff0c;例如从公交站…

【C++从0到王者】第五十站:B树

文章目录 一、内查找与外查找1.内查找2.外查找 二、B树概念三、B树的插入1.B树的插入分析2.B树插入总结3.插入代码实现4.B树满树和最空时候的对比5.B树的删除6.遍历B树7.B树的性能分析 一、内查找与外查找 1.内查找 像我们之前所用的在内存中的查找就是内查找 种类数据格式时…

C#,基于密度的噪声应用空间聚类算法(DBSCAN Algorithm)源代码

1 聚类算法 聚类分析或简单聚类基本上是一种无监督的学习方法&#xff0c;它将数据点划分为若干特定的批次或组&#xff0c;使得相同组中的数据点具有相似的属性&#xff0c;而不同组中的数据点在某种意义上具有不同的属性。它包括许多基于差分进化的不同方法。 E、 g.K-均值…

学习经验分享【NO.21】近期中文核心期刊目标检测论文理解

前言&#xff1a;最近比较忙&#xff0c;很久没有翻看知网论文了&#xff0c;看了下yolo改进相关的论文发现基于YOLOv5改进的核心期刊论文还是层出不穷&#xff0c;并没有因为已经是2024年了YOLOv9的出现而导致论文不好发&#xff0c;同时YOLOv8的论文也出了不少&#xff0c;所…

火柴排队(逆序对 + 离散化)

505. 火柴排队 原题链接 思路 如下是画图分析的一些过程 在这里贪心的思路是排序&#xff0c;然后两个数组都是从小到大那样对应的话最终的答案可达到最小 而我们只能交换相邻的火柴&#xff0c;故在这里先假设一个简化版本&#xff0c;即A有序&#xff0c;而只需要对B进行…

Java定时调度

在Java应用程序中&#xff0c;定时调度是一项重要的任务。它允许你安排代码执行的时间&#xff0c;以便在将来的某个时刻自动执行任务。Java提供了多种方式来实现定时调度&#xff0c;其中最常用的是Java的Timer和ScheduledExecutorService。 在本教程中&#xff0c;我们将学习…

990-39产品经理:Top 5 Most Common Incident Response Scenarios 五大最常见的事件响应场景

Top 5 Most Common Incident Response Scenarios 五大最常见的事件响应场景 Dealing with a cyber incident can be a daunting experience. Whether you’re targeted by phishing, malicious network scanning, or ransomware, it’s easy to feel overwhelmed. Even if you…