论文阅读 (100):Simple Black-box Adversarial Attacks (2019ICML)

文章目录

  • 1 概述
    • 1.1 要点
    • 1.2 代码
    • 1.3 引用
  • 2 背景
    • 2.1 目标与非目标攻击
    • 2.2 最小化损失
    • 2.3 白盒威胁模型
    • 2.4 黑盒威胁模型
  • 3 简单黑盒攻击

1 概述

1.1 要点

题目:简单黑盒对抗攻击 (Simple black-box adversarial attacks)

策略:提出了一个在黑盒设置下构建对抗图像的简单方法:

  1. 从预定义的正交基中随机采样一个向量,并将其添加或减去到目标图像;
  2. 在多个现实任务下展示了算法的性能和效率;
  3. 算法非常快,且实现仅需不要20Pytorch代码;

1.2 代码

https://github.com/cg563/simple-blackbox-attack

1.3 引用

@inproceedings{Guo:2019:24842493,
author		=	{Guo, Chuan and Gardner, Jacob and You, Yurong and Wilson, Andrew Gordon and Weinberger, Kilian},
title		=	{Simple black-box adversarial attacks},
booktitle	=	{{ICML}},
pages		=	{2484--2493},
year		=	{2019},
url			=	{https://proceedings.mlr.press/v97/guo19a.html}
}

2 背景

对抗样本的研究关注于机器学习模型对细微改变的健壮性。图像分类的任务是成功预测人类所认知的图像。自然地,这样的微小改变不会影响人类的判断。基于此,可以将健壮性形式化表述为:给定一个模型 h h h和一些输入-标签对 ( x , y ) (x,y) (x,y),如果模型能正确分类 h ( x ) = y h(x)=y h(x)=y,则称 h h h是关于概率度量 d ( ⋅ , ⋅ ) d(\cdot,\cdot) d(,) ρ \rho ρ健壮的:
h ( x ′ ) = y ∀ x ′ ∈ { x ′ ∣ d ( x ′ , x ) ≤ ρ } . h(x')=y\ \forall x'\in\{ x' | d(x',x) \leq \rho \}. h(x)=y x{xd(x,x)ρ}.度量 d d d通常被近似为 L 0 , L 2 , L ∞ L_0,L_2,L_\infty L0,L2,L,以度量输入 x x x和扰动 x ′ x' x之间视觉不相似性的程度。除非特别说明,本文均采用 d ( x , x ′ ) = ∥ x − x ′ ∥ 2 d(x,x')=\| x-x' \|_2 d(x,x)=xx2作为感知度量。在几何上,难以察觉的变化区域被定义为一个半径 ρ \rho ρ、以 x x x为中心的超球。对抗攻击的目标便是找到一个对抗方向 δ \delta δ,使得模型对 x ′ = x + δ x'=x+\delta x=x+δ的决策发生改变。

2.1 目标与非目标攻击

最简单的成功攻击的条件是将原始预测改变为其它任意类别 h ( x ′ ) ≠ y h(x')\neq y h(x)=y。这便是非目标攻击。与此相应地,目标攻击的目标是对于选择的目标类 y ′ y' y,有 h ( x ′ ) = y ′ h(x')=y' h(x)=y。为了简便,余下的讨论均在目标攻击下进行。

2.2 最小化损失

由于模型输出离散决策,因此寻找对抗性扰动来改变模型首先是一个离散优化问题。然而,其经常定义一个代理损失 ℓ y ( ⋅ ) \ell_y(\cdot) y()来度量模型 h h h将输入归类为 y y y的确信度。因此,对抗扰动问题可以被制定为最小化模型分类确信度的连续优化问题:
min ⁡ δ ℓ y ( x + δ ) subject to  ∥ δ ∥ 2 < ρ \min_\delta\ell_y(x+\delta) \text{ subject to }\| \delta \|_2<\rho δminy(x+δ) subject to δ2<ρ当模型 h h h输出对应于每个类别的概率 p h ( ⋅ ∣ x ) p_h(\cdot|x) ph(x)时,一个常用的对抗损失是类别 y y y的概率: ℓ y ( x ′ ) = p h ( y ∣ x ′ ) \ell_y(x')=p_h(y|x') y(x)=ph(yx),其需要最小化正确分类的概率。对于目标攻击,一个选择是 ℓ y ′ ( x ′ ) = − p h ( y ′ ∣ x ′ ) \ell_{y'}(x')=-p_h(y'|x') y(x)=ph(yx),本质上是最大化误分类为 y ′ y' y的概率。

2.3 白盒威胁模型

依赖于所在的应用领域,攻击者对于目标模型 h h h的知识有不同程度的了解。在白盒威胁模型下,分类器 h h h将提供给攻击者。在该设置下,一个有力的攻击策略是在对抗损失 ℓ y ( ⋅ ) \ell_y(\cdot) y()下执行梯度下降或者近似理论。为了确保不易察觉的改变,一种方式是控制扰动的范数 ∥ δ ∥ 2 \|\delta\|_2 δ2、早停,或者直接在损失优化过程中引入正则或者约束。

2.4 黑盒威胁模型

对于很多实际应用而言,白盒假设是不切实际的。例如,模型 h h h的展示形式是API,仅能够基于输入获取查询结果。对于攻击者而言,黑盒模型将更具有挑战性,这是因为梯度信息将不能引导对抗方向 δ \delta δ,且每次查询将消耗时间和金钱。因此,黑盒威胁设置下,附加了最小化查询次数 h h h的优化目标。修改后的优化目标为:
min ⁡ δ ℓ y ( x + δ ) subject to:  ∥ δ ∥ < ρ , queries ≤ B \min_\delta\ell_y(x+\delta)\text{ subject to: }\|\delta\|<\rho,\text{ queries}\leq B δminy(x+δ) subject to: δ<ρ, queriesB其中 B B B是固定代价。对于迭代优化算法而言,攻击算法需要快速收敛到可行解。

3 简单黑盒攻击

假设已有一张图像 x x x、黑盒神经网络 h h h,分类器 h ( x ) = y h(x)=y h(x)=y。我们的目标是找到一个小的扰动 δ \delta δ,其满足 h ( x + δ ) ≠ y h(x+\delta)\neq y h(x+δ)=y。尽管在黑盒设置下,梯度信息是缺失的,输出概率依然可以用于引导对抗图像的生成。

3.1 算法

算法1展示了本文输入的伪代码:对于任意方向 q \mathbf{q} q和步长大小 ϵ \epsilon ϵ x + ϵ q x+\epsilon\mathbf{q} x+ϵq或者 x − ϵ q x-\epsilon\mathbf{q} xϵq可能会降低 p h ( y ∣ x ) p_h(y|x) ph(yx)。因此我们重复地随机选择方向 q \mathbf{q} q并添加或者减去它。为了最小化查询 h ( ⋅ ) h(\cdot) h()的次数,总是首先尝试添加 ϵ q \epsilon\mathbf{q} ϵq。如果概率 p h ( y ∣ x ) p_h(y|x) ph(yx)降低则采取该步骤,否则将减去 ϵ q \epsilon\mathbf{q} ϵq

所提出的简单黑盒攻击 (SimBA) ,使用目标图像标签对 ( x , y ) (x,y) (x,y)作为输入,以及正交候选向量 Q Q Q和步长 ϵ > 0 \epsilon>0 ϵ>0。为了简化,我们均匀随机采样 q ∈ Q \mathbf{q}\in Q qQ。为了保证最大的查询效率,确保了没有两个方向将会取消或者削减对方,或者不合适地放大或者增加 δ \delta δ的范数。在 T T T次更新后,扰动的范数为 ∥ δ ∥ 2 = T ϵ \|\delta\|_2=\sqrt{T}\epsilon δ2=T ϵ

3.2 Cartesian基

正交搜索方向 Q Q Q的一个很自然的选择是标准基 Q = I Q=I Q=I,其对应算法在像素空间的更新方向。本质上,算法在每次更新随机选择一个像素增加或者减少,这样的攻击被称为 L 0 L_0 L0攻击,其将尽可能少的改变像素。

3.3 离散余弦基

最近的工作发现低频空间中的随机噪声更有可能是对抗性的。对此,我们将探索离散余弦变换 (DCT)。DCT是一个正交变换,其用于将2D图像空间 R d × d \mathbb{R}^{d\times d} Rd×d中的信号映射到与余弦波函数的幅度相对于的频率系数。接下来,我们将DCT提取的正交频率集合称为 Q DCT Q_\text{DCT} QDCT。完整的 Q DCT Q_\text{DCT} QDCT包含 d × d d\times d d×d个频段,我们仅保留比例 r r r的低频段,以在低频空间中生成对抗扰动。

3.4 一般基

理论上,在基向量可以被高效采集的前提下,任意的正交基都能用于本文方法。这对于高分辨率数据集,例如ImageNet来说无疑是一个大的挑战,因为每一个正交基的维度是 d × d d\times d d×d。迭代采样方法,例如Gram-Schmidt不能使用,因为内存代价随采样向量的数量线性增长。因此,本文仅选用标准基向量和DCT基向量

3.5 学习率 ϵ \epsilon ϵ

给定任意的搜索方向 Q Q Q,一些方法能够更多的降低 p h ( y ∣ x ) p_h(y|x) ph(yx)。此外,输出概率 p h ( y ∣ x + ϵ q ) p_h(y|x+\epsilon\mathbf{q}) ph(yx+ϵq)可能是非单调的。图1展示了在像素空间和DCT空间随机采样搜索方向时,输出概率随 ϵ \epsilon ϵ变化的相对情况 (ReaNet-50预测ImageNet验证集)。结果表明,概率 p h ( y ∣ x + ϵ q ) p_h(y|x+\epsilon\mathbf{q}) ph(yx+ϵq)的下降与 ϵ \epsilon ϵ的增长相匹配。尽管一些方向增加了正确类别的概率,该概率的预期变化为负且斜率相对较陡。这说明算法对 ϵ \epsilon ϵ的选择不敏感,其将快速降低正类别的概率。

3.6 预算

通过探索 Q Q Q的正交性,我们能够约束 δ \delta δ的范数。在每次迭代过程中,基向量将被用于加或者减,当无法改变输出概率时,则抛弃。令 α i ∈ { − ϵ , 0 , ϵ } \alpha_i\in\{-\epsilon,0,\epsilon\} αi{ϵ,0,ϵ}表示在第 t t t步时的搜索方向,因此:
δ t + 1 = δ t + α t q t \delta_{t+1}=\delta_t+\alpha_t\mathbf{q}_t δt+1=δt+αtqt最终的扰动可以记作:
δ T = ∑ t = 1 T α t q t \delta_T=\sum_{t=1}^T\alpha_t\mathbf{q}_t δT=t=1Tαtqt因为方向 q t \mathbf{q}_t qt是正交的,对于任意的 t ≠ t ′ t\neq t' t=t q t ⊤ q t ′ = 0 \mathbf{q}_t^\top\mathbf{q}_{t'}=0 qtqt=0。因此,对抗扰动的 L 2 L_2 L2范数计算为:
∥ δ T ∥ 2 2 = ∥ ∑ t = 1 T α t q t ∥ 2 2 = ∑ t = 1 T ∥ α t q t ∥ 2 2 = ∑ t = 1 T α t 2 ∥ q t ∥ 2 2 ≤ T ϵ 2 \left\| \delta_T \right\|_2^2 = \left\| \sum_{t=1}^T\alpha_t\mathbf{q}_t \right\|_2^2 = \sum_{t=1}^T\left\| \alpha_t\mathbf{q}_t \right\|_2^2 = \sum_{t=1}^T\alpha_t^2\left\| \mathbf{q}_t \right\|_2^2\leq T\epsilon^2 δT22= t=1Tαtqt 22=t=1Tαtqt22=t=1Tαt2qt22Tϵ2因此,在 T T T轮迭代之后,对抗扰动的最大 L 2 L_2 L2范数为 T ϵ \sqrt{T}\epsilon T ϵ,这对于任意正交基均成立。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72720.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Docker 概念构成

0 概述 构成原理 Docker 客户端(Client)Docker 客户端通过命令行或者其他工具使用 Docker SDK与 Docker 的守护进程通信。Docker 主机(Host)一个物理或者虚拟的机器用于执行 Docker 守护进程和容器。Docker Hub 提供了庞大的镜像集合供使用。一个 Docker Registry 中可以包含多…

E5071C是德科技网络分析仪

描述 E5071C网络分析仪提供同类产品中最高的RF性能和最快的速度&#xff0c;具有宽频率范围和多功能。E5071C是制造和R&D工程师评估频率范围高达20 GHz的RF元件和电路的理想解决方案。特点: 宽动态范围:测试端口的动态范围> 123 dB(典型值)快速测量速度:41毫秒全2端口…

YOLOV8从零搭建一套目标检测系统(修改model结构必看)附一份工业缺陷检测数据集

目录 1.YOLOV8介绍 2.YOLOV8安装 2.1环境配置 3.数据集准备 1.YOLOV8介绍 Yolov8结构图&#xff1a; YoloV8相对于YoloV5的改进点&#xff1a; Replace the C3 module with the C2f module. Replace the first 6x6 Conv with 3x3 Conv in the Backbone. Delete two Convs …

Linux socket网络编程实战(tcp)实现双方聊天

在上节已经系统介绍了大致的流程和相关的API&#xff0c;这节就开始写代码&#xff01; 回顾上节的流程&#xff1a; 创建一个NET文件夹 来存放网络编程相关的代码&#xff1a; tcp服务端代码初步实现--上 这部分先实现服务器的连接部分的代码并进行验证 server1.c&#xff…

接口自动化测试总结

一、什么项目适合做自动化测试&#xff1f; 软件需求变动不频繁 测试脚本的稳定性决定了自动化测试的维护成本。如果软件需求变动过于频繁&#xff0c;测试人员需要根据变动的需求来更新测试用例以及相关的测试脚本&#xff0c;而脚本的维护本身就是一个代码开发的过程&#x…

【二分答案 dp】 Bare Minimum Difference

分析&#xff1a; 首先我们能够得知这个优秀值具有单调性&#xff1a; 如果一个优秀值 x 1 x1 x1能够满足题目要求&#xff0c;那么任何 x ( x > x 1 ) x(x>x1) x(x>x1)显然都能符合要求 基于这一特性&#xff0c;我们想到二分答案 直接二分这个答案好像难以维护。 …

【计算机网络】 静态库与动态库

文章目录 静态库实践使用方法总结 动态库实践使用方法总结 静态库与动态库的优缺点静态库优点缺点 动态库缺点优点 库有两种&#xff1a;静态库&#xff08;.a、.lib&#xff09;和动态库&#xff08;.so、.dll&#xff09;。所谓静态、动态是指链接。静态库是将整个库文件都拷…

虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题

虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题 文章目录 虚幻引擎4中关于设置关于体坐标系下的物体速度的相关问题前言全局坐标系转体坐标系速度设置X轴方向的体坐标系速度设置Y轴方向的体坐标系速度XY轴体坐标系速度整合 Z轴速度的进一步设置解决办法 小结 前言 利…

[git] 如何克隆仓库,进行项目撰写,并绑定自己的远程仓库

摘要&#xff1a;删除.git文件&#xff0c;才可重新绑定远程仓库。 具体步骤&#xff1a; 文件夹右键&#xff0c;进入”Git Bash Here“执行命令 1. 执行 ”git clone 仓库地址“&#xff0c;克隆仓库 2. 在生成的仓库中&#xff0c;删除 .git 文件 3. git init 初始化仓库…

自造简易版音频进度条

最近在做音乐播放器页面, 积累了很多有趣的经验, 今天先分享播放进度条的开发过程. 效果 话不多说&#xff0c;先看效果 支持点击修改进度&#xff0c;拖拽修改进度&#xff0c;当然大家肯定都知道ui库里面有现成的&#xff0c;为何要自己造一个 首先著名的ui库中确实都要这…

前端实习第七周周记

前言 第六周没写&#xff0c;是因为第六周的前两天在处理第五周的样本库部分。问题解决一个是嵌套问题&#xff08;因为我用到了递归&#xff09;&#xff0c;还有一个问题在于本机没有问题&#xff0c;打包上线接口404。这个问题我会在这周的总结中说。 第六周第三天才谈好新…

《TCP/IP网络编程》阅读笔记--地址族和数据序列

目录 1--IP地址和端口号 2--地址信息的表示 3--网络字节序与地址变换 4--网络地址的初始化与分配 5--Windows部分代码案例 1--IP地址和端口号 IP 地址分为两类&#xff1a; ① IPv4 表示 4 字节地址族&#xff1b; ② IPv6 表示 16 字节地址族&#xff1b; IPv4 标准的 4 …

Meta 验证徽章:为何大家都想在 FB 和 IG 上获得元验证

随着 Meta&#xff08;前身为 Facebook&#xff09;和 Instagram 统治数字领域&#xff0c;Meta Verified 徽章已成为真实性的终极象征。无论您是公众人物还是品牌&#xff0c;在Facebook和Instagram上获得此徽章都会对您的在线形象产生深远的影响。Facebook验证于2013年首次推…

【文字到语音的论文总结】

1.文字到语音的整个过程 文字到语音的一般整体结构 主要是下面这个流程&#xff0c;每个网络可能会把其中两者或是三者融合在一起来&#xff1b; 长度不同的问题 生成的语音可能和文字的长度并不一样&#xff0c;因此需要解决这个问题 Tactron使用的是交叉注意力的方式解…

Vue + Element UI 前端篇(十):动态加载菜单

Vue Element UI 实现权限管理系统 前端篇&#xff08;十&#xff09;&#xff1a;动态加载菜单 动态加载菜单 之前我们的导航树都是写死在页面里的&#xff0c;而实际应用中是需要从后台服务器获取菜单数据之后动态生成的。 我们在这里就用上一篇准备好的数据格式Mock出模…

vue3项目,点击分页器,列表接口请求两次的问题

接手别人做的项目&#xff0c;出现了一个分页器bug&#xff0c;vue3element plus&#xff0c;记录一下。 点击分页器&#xff0c;却出现了调用两次列表接口的情况&#xff0c;并且第二次请求&#xff0c;分页器的pageNum自动变成1&#xff0c;这样就导致了分页器bug&#xff0…

k8s部署redis 3主3从

k8s部署redis6节点&#xff0c;组成3主3从集群模式 一般来说&#xff0c;redis部署有三种模式。 单实例模式&#xff0c;一般用于测试环境。 哨兵模式 集群模式后两者用于生产部署 哨兵模式 在redis3.0以前&#xff0c;要实现集群一般是借助哨兵sentinel工具来监控master节点…

1.4 空间中的曲线和曲面

空间中的曲线与曲面 知识点1 曲面方程定义 定义1 如果曲面 S 与方程F (x,y,z ) 0 有下述关系&#xff1a; &#xff08;1&#xff09; 曲面 S 上的任意点的坐标都满足此方程 &#xff08;2&#xff09;不在曲面S上的点的坐标不满足此方程 则F&#xff08;x,y,z&#xff0…

Redis 集群

1. 是什么 1.1 定义 由于数据量过大&#xff0c;单个Master复制集难以承担&#xff0c;因此需要对多个复制集进行集群&#xff0c;形成水平扩展每个复制集只负责存储整个数据集 的一部分&#xff0c;这就是Redis的集群&#xff0c;其作用是提供在多个Redis节点间共享数据的程序…

K8S原理架构与实战教程

文章目录 一、背景1.1 物理机时代、虚拟机时代、容器化时代1.2 容器编排的需要 二、K8S架构2.2 Worker节点 三、核心概念3.1 Pod3.2 Deployment3.3 Service3.4 Volume3.5 Namespace 四、K8S安装五、kubectl常用命令六、K8S实战6.1 水平扩容6.2 自动装箱6.2.1 节点污点6.2.2 Pod…