K8S原理架构与实战教程

文章目录

  • 一、背景
    • 1.1 物理机时代、虚拟机时代、容器化时代
    • 1.2 容器编排的需要
  • 二、K8S架构
    • 2.2 Worker节点
  • 三、核心概念
    • 3.1 Pod
    • 3.2 Deployment
    • 3.3 Service
    • 3.4 Volume
    • 3.5 Namespace
  • 四、K8S安装
  • 五、kubectl常用命令
  • 六、K8S实战
    • 6.1 水平扩容
    • 6.2 自动装箱
      • 6.2.1 节点污点
      • 6.2.2 Pod调度策略
    • 6.3 Secret
      • 6.3.1 挂载卷的方式
      • 6.3.2 环境变量的方式
    • 6.4 ConfigMap
    • 6.5 存储编排
    • 6.6 服务发现与负载均衡
    • 6.7 自我修复
      • 6.7.1 Pod重启机制
      • 6.7.2 Pod健康检查
    • 6.8 自动化上线与回滚
  • 参考资料

一、背景

1.1 物理机时代、虚拟机时代、容器化时代

在介绍K8S之前,先来看看服务器的演变过程:物理机时代、虚拟机时代、容器化时代。

物理机时代的缺点:

  • 部署慢 :每台服务器都要安装操作系统、相关的应用程序所需要的环境,各种配置
  • 成本高:物理服务器的价格十分昂贵
  • 资源浪费:硬件资源不能充分利用
  • 扩展和迁移成本高:扩展和迁移需要重新配置一模一样的环境

虚拟机时代很好的解决了物理机时代的缺点,虚拟机时代的特点是:

  • 易部署:每台物理机可部署多台虚拟机,且可以通过模板,部署快,成本低
  • 资源池:开出来的虚拟机可作为资源池备用,充分压榨服务器性能
  • 资源隔离:每个虚拟机都有独立分配的内存磁盘等硬件资源,虚拟机之间不会互相影响
  • 易扩展:随时都能在一个物理机上创建或销毁虚拟机

虚拟机的缺点是:每台虚拟机都需要安装操作系统

容器化时代解决了虚拟机时代的缺点,容器化时代在继承了虚拟机时代优点的基础之上,还有以下优势

  • 更高效的利用硬件资源:所有容器共享主机操作系统内核,不需要安装操作系统。
  • 一致的运行环境:相同的镜像产生相同的行为
  • 更小:较虚拟机而言,容器镜像更小,因为不需要打包操作系统
  • 更快:容器能达到秒级启动,其本质是主机上的一个进程

1.2 容器编排的需要

容器技术的代表就是docker,docker在单机上使用方便快捷,但在集群中表现如何呢?假设现在有5个节点,每个节点中都装有docker,现在要部署一个应用,要求要10个副本,有如下做法:

  • 在5个节点上随机分配
  • 平均分配,每台节点分配2个
  • 根据不同节点的负载状态分配,负载低的优先分配

无论选择哪种方法都需要执行相同docker run命令10遍,如果是最后一种做法还需要挨个检查每个节点的负载,这种问题叫做不利于自动装箱

如果以后增加了1个副本还需要再重复上面的动作,如果增加10个呢?增加100个呢?人为去操作那就有点难受了,这种问题叫做不利于水平扩容与缩容,简称水平扩缩

如果现在要变更版本,更新或者回滚,需要停止容器,然后替换新版本镜像,再启动,这样的操作每个副本都要来一次,如果副本太多,简直是噩梦,这种问题叫做不利于自动化上线和回滚

如果现在一个容器停止运行了,docker的重启策略会将它拉起来继续运行,这没什么问题,如果节点宕机了呢?上面的所有容器都停止了,docker重启策略就没用了,这样副本的数量就会减少,这个问题叫做不能自我修复

假设需要负载均衡,那么得新增一个节点安装负载均衡器,并且配置5个节点的IP和端口,前提是容器的端口要映射到主机端口,而且容器之前网络是隔离的,不能相互访问,维护成本高,这个问题叫不利于服务发现与负载均衡

上面的这些操作,就是容器编排,既然存在如上问题,那么就需要一个技术进行自动化编排,这个技术就是K8S,K8S即kubernetes /kjubɚ’nɛtɪs/

Kubernetes,是一个工业级的容器编排平台。Kubernetes 这个单词是希腊语,它的中文翻译是“舵手”或者“飞行员”。在一些常见的资料中也会看到“ks”这个词,也就是“K8s”,它是通过将 8 个字母“ubernete ”替换为“8”而成为的一个缩写。

K8S官网:https://kubernetes.io/zh-cn/
根据官网描述,它有如下功能:
在这里插入图片描述

二、K8S架构

在K8S中,由Master控制节点和Worker节点共同构成一个集群,总体架构如下图所示:

## 2.1 Master节点
  • etcd:分布式KV数据库,使用Raft协议,用于保存集群中的相关数据,项目地址:https://github.com/etcd-io/etcd
  • API Server:集群统一入口,以restful风格进行操作,同时交给etcd存储(是唯一能访问etcd的组件);提供认证、授权、访问控制、API注册和发现等机制,可以通过kubectl命令行工具,dashboard可视化面板,或者sdk等访问。
  • Scheduler:节点的调度,选择node节点应用部署。
  • Controller Manager:处理集群中常规后台任务,一个资源对应一个控制器,同时监控集群的状态,确保实际状态和最终状态一致。

2.2 Worker节点

  • kubelet:相当于Master派到node节点代表,管理本机容器,上报数据给API Server
  • Container Runtime:容器运行时,K8S支持多个容器运行环境:Docker、Containerd、CRI-O、Rktlet以及任何实现- Kubernetes CRI (容器运行环境接口) 的软件
  • kube-proxy:实现服务(Service)抽象组件,屏蔽PodIP的变化和负载均衡

三、核心概念

3.1 Pod

  • Pod是最小调度单元
  • Pod里面会包含一个或多个容器(Container)
  • Pod内的容器共享存储及网络,可通过localhost通信

Pod本意是豌豆荚的意思,此处指的是K8S中资源调度的最小单位,豌豆荚里面的小豆子就像是Container,豌豆荚本身就像是一个Pod。

3.2 Deployment

Deployment 是在 Pod 这个抽象上更为上层的一个抽象,它可以定义一组 Pod 的副本数目、以及这个 Pod 的版本。一般大家用 Deployment 这个抽象来做应用的真正的管理,而 Pod 是组成 Deployment 最小的单元。

  • 定义一组Pod的副本数量,版本等
  • 通过控制器维护Pod的数目
  • 自动恢复失败的Pod
  • 通过控制器以指定的策略控制版本

3.3 Service

Pod是不稳定的,IP是会变化的,所以需要一层抽象来屏蔽这种变化,这层抽象叫做Service

  • 提供访问一个或者多个Pod实例稳定的访问地址
  • 支持多种访问方式ClusterIP(对集群内部访问)NodePort(对集群外部访问)LoadBalancer(集群外部负载均衡)

3.4 Volume

Volume就是存储卷,在Pod中可以声明卷来问访问文件系统,同时Volume也是一个抽象层,其具体的后端存储可以是本地存储、NFS网络存储、云存储(阿里云盘、AWS云盘、Google云盘等)、分布式存储(比如说像 ceph、GlusterFS )

  • 声明在Pod中容器可以访问的文件系统
  • 可以被挂载在Pod中一个或多个容器的指定路径下
  • 支持多种后端储存

3.5 Namespace

Namespace(命令空间)是用来做资源的逻辑隔离的,比如上面的Pod、Deployment、Service都属于资源,不同Namespace下资源可以重名。同一Namespace下资源名需唯一

  • 一个集群内部的逻辑隔离机制(鉴权、资源等)
  • 每个资源都属于一个Namespace
  • 同一个Namespace中资源命名唯一
  • 不同Namespace中资源可重名

四、K8S安装

具体的安装教程可以参考:https://kuboard.cn/install/install-k8s.html
里面写的很详细了,此处不再赘述,简化过程如下

  1. 创建虚拟机,2个或者2个以上
  2. 操作系统为 CentOS 7.8 或者 CentOS Stream 8
  3. 每个节点CPU 内核数量大于等于 2,且内存大于等于 4G(实测2G也可以)
  4. 修改网络配置文件:/etc/sysconfig/network-scripts/ifcfg-ens33 改成固定IP
  5. 安装containerd/kubelet/kubeadm/kubectl,注意教程中使用的容器运行时为containerd,如果需要使用docker,可以先安装docker然后跳过脚本中安装containerd的部分
  6. 初始化-master-节点
  7. 初始化-worker节点
  8. 验证:在Master节点上执行kubectl get nodes -o wide,能看到添加的worker节点即安装成功

我的环境情况如下:

NAME        STATUS   ROLES                  AGE   VERSION   INTERNAL-IP       
my-master   Ready    control-plane,master   27h   v1.21.0   192.168.108.101
my-node     Ready    <none>                 27h   v1.21.0   192.168.108.102

192.168.108.101是Master角色,名字为my-master;192.168.108.102是Worker角色,名字为my-node

五、kubectl常用命令

kubectl 则是 Kubernetes 的命令行工具,用于管理 Kubernetes 集群。

kubectl controls the Kubernetes cluster manager.
意为K8S集群管理的控制器,kubectl --help可以打印帮助命令。

(1)查看集群信息:

kubectl cluster-info  # 显示集群信息。

(2)查看资源状态:

kubectl get pods  # 查看所有Pod的状态
kubectl get deployments  # 查看所有部署的状态
kubectl get services  # 查看所有服务的状态
kubectl get nodes  # 查看所有节点的状态
kubectl get namespaces  # 查看所有命名空间的状态kubectl describe pod <pod-name>  # 显示特定Pod的详细信息
kubectl describe node <node-IP/name>  # 显示特定Node的详细信息

(3)创建和管理资源:

kubectl create -f <filename>  # 根据YAML文件创建资源
kubectl apply -f <filename>  # 根据YAML文件创建或更新资源
kubectl delete -f <filename>  # 根据YAML文件删除资源kubectl scale deployment <deployment-name> --replicas=<replica-count>  # 扩展或缩减部署的副本数
kubectl expose deployment <deployment-name> --port=<port> --type=<service-type>  # 创建一个服务来公开部署

(4)执行操作:

kubectl exec -it <pod-name> -- <command>  # 在Pod中执行特定命令
kubectl logs <pod-name>  # 查看Pod的日志
kubectl port-forward <pod-name> <local-port>:<pod-port>  # 将本地端口与Pod的端口进行转发

(5)删除资源:

kubectl delete deployment <deployment-name>  # 删除部署
kubectl delete pod <pod-name>  # 删除Pod
kubectl delete service <service-name>  # 删除服务

六、K8S实战

6.1 水平扩容

为什么先实战水平扩容?因为这个最简单,首先来部署一个喜闻乐见的nginx

kubectl create deployment web --image=nginx:1.14

这句话表示创建一个资源,啥资源呢?是一个deployment(可以简写为deploy),取名叫web,指定了镜像为nginx的1.14版本,但是先别执行这句话,我们一般不这么部署应用,因为不好复用,一般通过yaml文件来部署,如下:

kubectl create deployment web --image=nginx:1.14 --dry-run -o yaml > web.yaml
  • –dry-run表示试运行,试一下看行不行,但是不运行
  • -o yaml表示以yaml格式输出
  • web.yaml表示将输出的内容重定向到web.yaml文件中

执行之后看看web.yaml文件里面有些什么:

apiVersion: apps/v1        # 表示资源版本号为apps/v1 
kind: Deployment           # 表示这是一个Deployment
metadata:                  # 一些元数据信息creationTimestamp: nulllabels:                  # 标签,可以随便定义app: webname: web                # 这个资源的名字
spec:                      # 资源的描述或者规格replicas: 1              # 副本数量selector:                # 选择器matchLabels:           # 需要匹配的标签app: web             # 标签的具体键值对strategy: {}template:                # 模板。表示Pod的生成规则metadata:creationTimestamp: nulllabels:app: webspec:                  containers:- image: nginx:1.14  #指定镜像文件name: nginxresources: {}
status: {}

用下面的命令应用web.yaml,web.yaml声明了一个Deployment和一个Pod

kubectl apply -f web.yaml

执行完后以后可以通过以下命令查看Deployment和Pod:

kubectl get deploy,po -o wide

结果如下:

NAME                  READY   UP-TO-DATE   AVAILABLE   AGE     CONTAINERS   IMAGES       SELECTOR
deployment.apps/web   1/1     1            1           2m40s   nginx        nginx:1.14   app=webNAME                       READY   STATUS    RESTARTS   AGE     IP               NODE    ...
pod/web-5bb6fd4c98-lg555   1/1     Running   0          2m40s   10.100.255.120   my-node ...

可以看到资源已经建立起来了,运行在Worker节点中,尝试访问一下Pod的IP:

curl 10.100.255.120

有如下nginx的标准返回说明应用已经部署完毕:

<!DOCTYPE html>
<html>
<head>
<title>Welcome to nginx!</title>
...
</html>

有没有感觉这一路下来挺麻烦的,yaml文件还那么长,还不如无脑docker run呢,别急,在后面扩缩容的时候就可以看到它的威力了,当然也可以用最开始的命令来执行kubectl create deployment web --image=nginx:1.14,测试可以,在生产环境中强烈不建议这么做。

【扩容实战】:假设现在扩容需求来了,需要部署同样的nginx副本10个,该怎么做?在K8S中很简单,直接告诉K8S我要10个副本即可,其他的细节不用关心。

具体的做法是修改上面的web.yaml文件,将replicas: 1声明成replicas: 10,最后再应用一下

kubectl apply -f web.yaml

此时快速的执行kubectl get po,可以看到一些容器已经开始运行了,一些在创建中,一些还在挂起:

NAME                       READY   STATUS              RESTARTS   AGE
pod/web-5bb6fd4c98-52qmf   0/1     ContainerCreating   0          1s
pod/web-5bb6fd4c98-5sp5l   0/1     Pending             0          1s
pod/web-5bb6fd4c98-9t2hm   0/1     ContainerCreating   0          1s
pod/web-5bb6fd4c98-lg555   1/1     Running             0          11m
...

稍等片刻可以看到所有Pod都是Running状态了!当然也可以偷懒一键扩容:

kubectl scale deploy web --replicas=10

6.2 自动装箱

根据资源需求和其他约束自动放置容器,同时避免影响可用性。将关键性工作负载和尽力而为性质的服务工作负载进行混合放置,以提高资源利用率并节省更多资源。

K8S支持多种策略,包括:节点污点、节点标签、Pod调度策略等。目的是提供最大的灵活性,最终提高整体资源利用率,这就是自动装箱。

6.2.1 节点污点

Taint 污点:节点不做普通分配调度,是节点属性,属性值有三个

  • NoSchedule:一定不被调度
  • PreferNoSchedule:尽量不被调度(也有被调度的几率)
  • NoExecute:不会调度,并且还会驱逐Node已有Pod

也就是说,给节点打上污点,那么调度的时候就会根据上面的属性来进行调度,一般来说Master节点的污点值是NoSchedule,查看Master污点值

kubectl describe node my-master | grep Taints

可以看到如下输出

Taints:             node-role.kubernetes.io/master:NoSchedule

6.2.2 Pod调度策略

Pod调度策略会影响到Pod最终被调度到哪个节点上,Pod调度策略有三类

  • Pod声明的requests和limits,前者就是Pod需要多少资源,后者表示Pod最多用多少资源,资源比如CPU内存等
  • 节点标签选择器,会选择符合标签的节点进行调度
  • 节点亲和性,分为硬亲和和软亲和,前者必须满足,后者尝试满足,不强制

6.3 Secret

Secret意为秘密,那在K8S中是啥意思呢?在K8S中表示一个存储在etcd中的配置,这个配置是秘密的,是安全的,通常用Base64编码,此配置可以通过挂载卷或者环境变量的方式供Pod访问,首先定义一个Secret:

# 首先将明文转换成base64编码
echo -n 'root' | base64   # 结果是cm9vdA==
echo -n '123456' | base64 # 结果是MTIzNDU2

通过下面的secret.yaml声明创建一个Secret,通过kubectl get secret可以查看刚才创建的Secret:

apiVersion: v1
kind: Secret
metadata:name: test-secret
data:username: cm9vdA==password: MTIzNDU2

6.3.1 挂载卷的方式

声明文件如下:

apiVersion: apps/v1
kind: Deployment
metadata:labels:app: webname: web
spec: replicas: 1selector: matchLabels:app: web             strategy: {}template:                metadata:labels:app: webspec:                  containers:- image: nginx:1.14name: nginx# 挂载到容器内volumeMounts:- name: secret-volumemountPath: /etc/secret-volume# 卷声明      volumes:- name: secret-volumesecret:secretName: test-secret
status: {}

创建之后进入容器,下面是进入容器命令,和docker一致,你创建出来的Pod不一定是这个名web-66d9b4684b-dvwtm,根据实际情况进入:

kubectl exec -it web-66d9b4684b-dvwtm bash

查看一下挂载的内容:

cat /etc/secret-volume/username  # 显示root
cat /etc/secret-volume/password  # 显示123456

6.3.2 环境变量的方式

声明文件如下:

apiVersion: apps/v1
kind: Deployment
metadata:labels:app: webname: web
spec: replicas: 1selector: matchLabels:app: web             strategy: {}template:                metadata:labels:app: webspec:                  containers:- image: nginx:1.14name: nginx# 环境变量声明env:- name: SECRET_USERNAMEvalueFrom:secretKeyRef:name: test-secretkey: username
status: {}

执行后再容器内部查看该环境变量是否符合预期值,打印出来的值应该是root,即我们设置的Secret

kubectl exec -it web-848bb777bc-x5mh4 -- /bin/sh -c 'echo $SECRET_USERNAME'

这里有一个疑问,既然是Base64的编码方式(不是加密方式),为什么说Secret是安全的呢?此处的安全是K8S提供的,主要是以前几点:

  • 传输安全(K8S中与API Server的交互都是HTTPS的)
  • 存储安全(Secret被挂载到容器时存储在tmpfs中,只存在于内存中而不是磁盘中,Pod销毁Secret随之消失)
  • 访问安全(Pod间的Secret是隔离的,一个Pod不能访问另一个Pod的Secret)

6.4 ConfigMap

ConfigMap可以看做是不需要加密,不需要安全属性的Secret,也是和配置相关的,创建ConfigMap的过程如下,首先创建一个配置文件,比如redis.properties,包含如下内容

redis.port=127.0.0.1
redis.port=6379
redis.password=123456

以下命令从文件redis.properties创建了一个名为redis-config的ConfigMap

kubectl create configmap redis-config --from-file=redis.properties

使用命令kubectl get configmap可以查看刚才创建的ConfigMap,当然ConfigMap也有挂载卷和设置环境变量的方式供Pod调用,此处不再赘述。

6.5 存储编排

存储编排可实现自动挂载所选存储系统,包括本地存储、诸如 GCP 或 AWS 之类公有云提供商所提供的存储或者诸如 NFS、iSCSI、Gluster、Ceph、Cinder 或 Flocker 这类网络存储系统。

提到存储就不得不说K8S中的PV和PVC了,解释如下:

  • PV:PersistentVolume,持久化卷
  • PVC:PersistentVolumeClaim,持久化卷声明

PV说白了就是一层存储的抽象,底层的存储可以是本地磁盘,也可以是网络磁盘比如NFS、Ceph之类,既然有了PV那为什么又要搞一个PVC呢?

PVC其实在Pod和PV之前又增加了一层抽象,这样做的目的在于将Pod的存储行为于具体的存储设备解耦,试想一下,假设哪天NFS网络存储的IP地址变化了,如果没有PVC,就需要每个Pod都改一下IP的声明,那得多累,有PVC来屏蔽这些细节之后只用改PV即可!

6.6 服务发现与负载均衡

服务发现与负载均衡可实现:无需修改你的应用程序即可使用陌生的服务发现机制。Kubernetes 为容器提供了自己的 IP 地址和一个 DNS 名称,并且可以在它们之间实现负载均衡。

到目前为止,我们的Pod已经可以实现水平扩缩、自动装箱、配置管理、存储编排了,但是访问还是个大问题,扩容后这么多Pod应该访问哪一个?如果能够自动将流量分配到不同的Pod上(负载均衡);并且当扩容或者缩容的时候能够动态的将Pod添加或者剔除出负载均衡的范围,简而言之就是服务发现。

那么在K8S中有没有东西可以做到服务发现和负载均衡呢?答案是有,这就是Service(还记得前面提到过的核心概念吗),Service有三种类型:

  • ClusterIp:集群内部访问(默认)
  • NodePort:集群外部访问(包含了ClusterIp)
  • LoadBalancer:对外访问应用使用,公有云

6.7 自我修复

自我修复可实现:重新启动失败的容器,在节点死亡时替换并重新调度容器,杀死不响应用户定义的健康检查的容器,并且在它们准备好服务之前不会将它们公布给客户端。

6.7.1 Pod重启机制

当Pod异常停止时,就会触发Pod的重启机制,根据重启策略会表现出不同的行为。

重启策略主要分为以下三种

  • Always:当容器终止退出后,总是重启容器,默认策略
  • OnFailure:当容器异常退出(退出状态码非0)时,才重启
  • Never:当容器终止退出,从不重启容器

6.7.2 Pod健康检查

健康检查顾名思义就是检查Pod是否健康,怎么来定义健康呢?假设这么一种情况,当程序内部发生了错误已经不能对外提供服务了,但此时主程序仍在运行,这种情况就是不健康的,或者当容器主进程已经启动了,但是服务还没有准备好,这种情况也是不健康的,这就需要从应用层面来检查,K8S中定义了两种检查机制

  • livenessProbe:存活检查,如果检查失败,将杀死容器,根据Pod的restartPolicy来操作
  • readinessProbe:就绪检查,如果检查失败,Kubernetes会把Pod从Service endpoints中剔除,也就是让客户流量不打到readinessProbe检查失败的Pod上

具体的检查方式支持三种

  • http Get:发送HTTP请求,返回200 - 400 范围状态码为成功
  • exec:执行Shell命令返回状态码是0为成功
  • tcpSocket:发起TCP Socket建立成功

6.8 自动化上线与回滚

Kubernetes 会分步骤地将针对应用或其配置的更改上线,同时监视应用程序运行状况以确保你不会同时终止所有实例。如果出现问题,Kubernetes 会为你回滚所作更改。你应该充分利用不断成长的部署方案生态系统。

参考资料

  • K8S原理架构与实战(基础篇)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72693.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

pico学习进程记录已经开发项目

Pico pin脚定义 Pico 运行准备 下载uf2文件 https://pico.org.cn/ &#xff08;注意运行micropython的文件和运行c/c的不一样&#xff09; 装载uf2文件&#xff1a;按住pico的按键&#xff0c;然后通过micro usb连接电脑&#xff08;注意&#xff1a;如果用的线材&#xff0c…

LeetCode刷题笔记【27】:贪心算法专题-5(无重叠区间、划分字母区间、合并区间)

文章目录 前置知识435. 无重叠区间题目描述参考<452. 用最少数量的箭引爆气球>, 间接求解直接求"重叠区间数量" 763.划分字母区间题目描述贪心 - 建立"最后一个当前字母"数组优化marker创建的过程 56. 合并区间题目描述解题思路代码① 如果有重合就合…

打造西南交通感知新范式,闪马智能携手首讯科技落地创新中心

9月4日&#xff0c;2023年中国国际智能产业博览会&#xff08;以下简称“智博会”&#xff09;在重庆拉开帷幕。大会期间&#xff0c;由上海闪马智能科技有限公司&#xff08;以下简称“闪马智能”&#xff09;与重庆首讯科技股份有限公司&#xff08;以下简称“首讯科技”&…

后端/DFT/ATPG/PCB/SignOff设计常用工具/操作/流程及一些文件类型

目录 1.PD/DFT常用工具及流程 1.1 FC和ICC2 1.2 LC (Library compiler) 1.3 PrimeTime 1.4 Redhawk与PA 1.5 Calibre和物理验证PV 1.6 芯片设计流程 2.后端、DFT、ATPG的一些常见文件 2.1 LEF和DEF 2.2 ATPG的CTL和STIL 2.3 BSDL 2.4 IPXCT 3.PCB设计的一些工作和工…

数学建模:模糊综合评价分析

&#x1f506; 文章首发于我的个人博客&#xff1a;欢迎大佬们来逛逛 数学建模&#xff1a;模糊综合评价分析 文章目录 数学建模&#xff1a;模糊综合评价分析综合评价分析常用评价方法一级模糊综合评价综合代码 多级模糊综合评价总结 综合评价分析 构成综合评价类问题的五个…

【SpringMVC]获取参数的六种方式

目录 1.通过ServletAPI获取 2.通过控制器方法的形参获取 3.RequestParam&#xff1a;将请求参数和控制器方法的形参绑定 4.RequestHeader&#xff1a;将请求头信息与控制器方法的形参的值进行绑定 5. CookieValue&#xff1a;将cookie数据和控制器方法的形参绑定 Cookie&…

gitlab 点击Integrations出现500错误

背景&#xff1a;在新服务器重新搭建了gitlab&#xff0c;并导入原来gitlab的备份&#xff0c;在项目中点击点击Integrations出现500错误。 解决方法&#xff1a;1.进入新服务器&#xff0c;将 /etc/gitlab/gitlab-secrets.json重命名为 /etc/gitlab/gitlab-secrets.json.bak …

yo!这里是进程控制

目录 前言 进程创建 fork()函数 写时拷贝 进程终止 退出场景 退出方法 进程等待 等待原因 等待方法 1.wait函数 2.waitpid函数 等待结果&#xff08;status介绍&#xff09; 进程替换 替换原理 替换函数 进程替换例子 shell简易实现 后记 前言 学习完操作…

Springboot 实践(14)spring config 配置与运用--手动刷新

前文讲解Spring Cloud zuul 实现了SpringbootAction-One和SpringbootAction-two两个项目的路由切换&#xff0c;正确访问到项目中的资源。这两个项目各自拥有一份application.yml项目配置文件&#xff0c;配置文件中有一部分相同的配置参数&#xff0c;如果涉及到修改&#xf…

【前端】CSS-Grid网格布局

目录 一、grid布局是什么二、grid布局的属性三、容器属性1、display①、语句②、属性值 2、grid-template-columns属性、grid-template-rows属性①、定义②、属性值1&#xff09;、固定的列宽和行高2&#xff09;、repeat()函数3&#xff09;、auto-fill关键字4&#xff09;、f…

L1-012 计算指数 C++

#include<iostream> #include<math.h> using namespace std; int main() {int n;int ret;cin >> n;if (n < 10) {ret pow(2, n);cout << "2^" << n << " " << ret<<endl;}return 0; } 所用知识点 …

suning苏宁API接入说明(苏宁商品详情+关键词搜索商品列表)

API地址:https://o0b.cn/anzexi 调用示例&#xff1a;https://api-gw.onebound.cn/suning/item_get/?keytest_api_key& &num_iid0070134261/703410301&&langzh-CN&secret 参数说明 通用参数说明 version:API版本key:调用key,测试key:test_api_keyapi_na…

轻松学会WiFi模块(ESP8266)—基于STM32,学到就是赚到!

目录 前言 一、ESP8266介绍 二、如何实现WiFi传输&#xff1f;代码详解附上 三、结果实现流程与展示 四、总结 题外话&#xff1a; 前言 哎哎哎&#xff0c;发觉好久没有更新博客了&#xff0c;最近一直事情比较多&#xff0c;也没什么时间注意博客&#xff0c;不过接下…

GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图教程

详情点击链接&#xff1a;GPT引领前沿与应用突破之GPT4科研实践技术与AI绘图教程 前沿 GPT对于每个科研人员已经成为不可或缺的辅助工具&#xff0c;不同的研究领域和项目具有不同的需求。 如在科研编程、绘图领域&#xff1a; 1、编程建议和示例代码: 无论你使用的编程语言是…

PCL入门(四):kdtree简单介绍和使用

目录 1. kd树的意义2. kd树的使用 参考博客《欧式聚类&#xff08;KD-Tree&#xff09;详解&#xff0c;保姆级教程》和《(三分钟)学会kd-tree 激光SLAM点云搜索常见》 1. kd树的意义 kd树是什么&#xff1f; kd树是一种空间划分的数据结构&#xff0c;对于多个维度的数据&a…

向量数据库Milvus Cloud核心组件再升级,主打就是一个低延迟、高准确度

支持 ScaNN 索引 Faiss 实现的 ScaNN,又名 FastScan,使用更小的 PQ 编码和相应的指令集可以更为友好地访问 CPU 寄存器,从而使其拥有优秀的索引性能。该索引在 Cohere 数据集,Recall 约 95% 的时候,Milvus 使用 Knowhere 2.x 版本端到端的 QPS 是 IVF_FLAT 的 7 倍,HN…

SpringMVC的整合完成CRUD(增删改查)

SpringMVC是一种基于Java的Web框架&#xff0c;它是Spring框架的一部分。SpringMVC通过使用MVC&#xff08;Model-View-Controller&#xff09;设计模式来组织和管理Web应用程序的开发。 在SpringMVC中&#xff0c;Model代表数据模型&#xff0c;View代表用户界面&#xff0c;C…

Java“牵手”阿里巴巴商品列表数据,关键词搜索阿里巴巴商品数据接口,阿里巴巴API申请指南

阿里巴巴商城是一个网上购物平台&#xff0c;售卖各类商品&#xff0c;包括服装、鞋类、家居用品、美妆产品、电子产品等。要获取阿里巴巴商品列表和商品详情页面数据&#xff0c;您可以通过开放平台的接口或者直接访问阿里巴巴商城的网页来获取商品详情信息。以下是两种常用方…

stm32之30.DMA

DMA&#xff08;硬件加速方法&#xff09;一般用于帮运比较大的数据&#xff08;如&#xff1a;摄像头数据图像传输&#xff09;&#xff0c;寄存器-》DMA-》RAM 或者 RAM-》DMA-》寄存器提高CPU的工作效率 源码-- #include "myhead.h" #include "adc.h"#…

STM32 Nucleo-144开发板开箱bring-up

文章目录 1. 开篇2. 开发环境搭建2.1 下载官方例程2.2 ST-Link安装 3. STM32F446ZE demo工程3.1 STM32F446ZE简介3.2 跑个demo试一试 1. 开篇 最近做项目&#xff0c;用到STM32F446ZET6这款MCU&#xff0c;为了赶进度&#xff0c;前期软件需要提前开发&#xff0c;于是在某宝买…