Seurat 中的数据可视化方法

本文[1]将使用从 2,700 PBMC 教程计算的 Seurat 对象来演示 Seurat 中的可视化技术。您可以从 SeuratData[2] 下载此数据集。

SeuratData::InstallData("pbmc3k")

library(Seurat)
library(SeuratData)
library(ggplot2)
library(patchwork)
pbmc3k.final <- LoadData("pbmc3k", type = "pbmc3k.final")
pbmc3k.final$groups <- sample(c("group1""group2"), size = ncol(pbmc3k.final), replace = TRUE)
features <- c("LYZ""CCL5""IL32""PTPRCAP""FCGR3A""PF4")
pbmc3k.final
## An object of class Seurat 
## 13714 features across 2638 samples within 1 assay 
## Active assay: RNA (13714 features, 2000 variable features)
##  3 layers present: data, counts, scale.data
##  2 dimensional reductions calculated: pca, umap

marker 特征表达的五种可视化

1. RidgePlot

# Ridge plots - from ggridges. Visualize single cell expression distributions in each cluster
RidgePlot(pbmc3k.final, features = features, ncol = 2)
alt
alt

2. VlnPlot

# Violin plot - Visualize single cell expression distributions in each cluster
VlnPlot(pbmc3k.final, features = features)
alt
# Violin plots can also be split on some variable. Simply add the splitting variable to object
# metadata and pass it to the split.by argument
VlnPlot(pbmc3k.final, features = "percent.mt", split.by = "groups")
alt

3. FeaturePlot

# Feature plot - visualize feature expression in low-dimensional space
FeaturePlot(pbmc3k.final, features = features)
alt
# Plot a legend to map colors to expression levels
FeaturePlot(pbmc3k.final, features = "MS4A1")
alt
# Adjust the contrast in the plot
FeaturePlot(pbmc3k.final, features = "MS4A1", min.cutoff = 1, max.cutoff = 3)
alt
# Calculate feature-specific contrast levels based on quantiles of non-zero expression.
# Particularly useful when plotting multiple markers
FeaturePlot(pbmc3k.final, features = c("MS4A1""PTPRCAP"), min.cutoff = "q10", max.cutoff = "q90")
alt
# Visualize co-expression of two features simultaneously
FeaturePlot(pbmc3k.final, features = c("MS4A1""CD79A"), blend = TRUE)
img
img
# Split visualization to view expression by groups (replaces FeatureHeatmap)
FeaturePlot(pbmc3k.final, features = c("MS4A1""CD79A"), split.by = "groups")
alt

4. DotPlot

# Dot plots - the size of the dot corresponds to the percentage of cells expressing the
# feature in each cluster. The color represents the average expression level
DotPlot(pbmc3k.final, features = features) + RotatedAxis()
alt
# SplitDotPlotGG has been replaced with the `split.by` parameter for DotPlot
DotPlot(pbmc3k.final, features = features, split.by = "groups") + RotatedAxis()
alt

5. DoHeatmap

## Single cell heatmap of feature expression
DoHeatmap(subset(pbmc3k.final, downsample = 100), features = features, size = 3)
alt

新绘图函数

DimPlot

# DimPlot replaces TSNEPlot, PCAPlot, etc. In addition, it will plot either 'umap', 'tsne', or
# 'pca' by default, in that order
DimPlot(pbmc3k.final)
alt
pbmc3k.final.no.umap <- pbmc3k.final
pbmc3k.final.no.umap[["umap"]] <- NULL
DimPlot(pbmc3k.final.no.umap) + RotatedAxis()
alt

DoHeatmap

# DoHeatmap now shows a grouping bar, splitting the heatmap into groups or clusters. This can
# be changed with the `group.by` parameter
DoHeatmap(pbmc3k.final, features = VariableFeatures(pbmc3k.final)[1:100], cells = 1:500, size = 4,
    angle = 90) + NoLegend()
alt

将主题应用于绘图

使用 Seurat,所有绘图函数默认返回基于 ggplot2 的绘图,允许人们像任何其他基于 ggplot2 的绘图一样轻松捕获和操作绘图。

baseplot <- DimPlot(pbmc3k.final, reduction = "umap")
# Add custom labels and titles
baseplot + labs(title = "Clustering of 2,700 PBMCs")
alt
# Use community-created themes, overwriting the default Seurat-applied theme Install ggmin
# with remotes::install_github('sjessa/ggmin')
baseplot + ggmin::theme_powerpoint()
alt
# Seurat also provides several built-in themes, such as DarkTheme; for more details see
# ?SeuratTheme
baseplot + DarkTheme()
alt
# Chain themes together
baseplot + FontSize(x.title = 20, y.title = 20) + NoLegend()
alt

交互式绘图功能

Seurat 利用 R 的绘图库来创建交互式绘图。此交互式绘图功能适用于任何基于 ggplot2 的散点图(需要 geom_point 图层)。使用时,只需制作一个基于 ggplot2 的散点图(例如 DimPlot() 或 FeaturePlot())并将结果图传递给 HoverLocator()

# Include additional data to display alongside cell names by passing in a data frame of
# information.  Works well when using FetchData
plot <- FeaturePlot(pbmc3k.final, features = "MS4A1")
HoverLocator(plot = plot, information = FetchData(pbmc3k.final, vars = c("ident""PC_1""nFeature_RNA")))
alt

Seurat 提供的另一个交互功能是能够手动选择细胞以进行进一步研究。我们发现这对于小簇特别有用,这些小簇并不总是使用无偏聚类来分离,但看起来却截然不同。现在,您可以通过创建基于 ggplot2 的散点图(例如使用 DimPlot() 或 FeaturePlot(),并将返回的图传递给 CellSelector() 来选择这些单元格。CellSelector() 将返回一个包含所选点名称的向量,这样您就可以将它们设置为新的身份类并执行微分表达式。

例如,假设 DC 在聚类中与单核细胞合并,但我们想根据它们在 tSNE 图中的位置来了解它们的独特之处。

pbmc3k.final <- RenameIdents(pbmc3k.final, DC = "CD14+ Mono")
plot <- DimPlot(pbmc3k.final, reduction = "umap")
select.cells <- CellSelector(plot = plot)
alt

绘图配件

除了为绘图添加交互功能的新函数之外,Seurat 还提供了用于操作和组合绘图的新辅助功能。

# LabelClusters and LabelPoints will label clusters (a coloring variable) or individual points
# on a ggplot2-based scatter plot
plot <- DimPlot(pbmc3k.final, reduction = "pca") + NoLegend()
LabelClusters(plot = plot, id = "ident")
alt
# Both functions support `repel`, which will intelligently stagger labels and draw connecting
# lines from the labels to the points or clusters
LabelPoints(plot = plot, points = TopCells(object = pbmc3k.final[["pca"]]), repel = TRUE)
alt

绘制多个图之前是通过CombinePlot() 函数实现的。我们不赞成使用此功能,转而使用拼凑系统。下面是一个简短的演示,但请参阅此处的 patchwork[3] 包网站以获取更多详细信息和示例。

plot1 <- DimPlot(pbmc3k.final)
# Create scatter plot with the Pearson correlation value as the title
plot2 <- FeatureScatter(pbmc3k.final, feature1 = "LYZ", feature2 = "CCL5")
# Combine two plots
plot1 + plot2
alt
# Remove the legend from all plots
(plot1 + plot2) & NoLegend()
alt
Reference
[1]

Source: https://satijalab.org/seurat/articles/visualization_vignette

[2]

Data: https://github.com/satijalab/seurat-data

[3]

patchwork: https://patchwork.data-imaginist.com/

本文由 mdnice 多平台发布

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/726678.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【wine】解决 0024:fixme:msctf:KeystrokeMgr_TestKeyUp STUB:(00A3D508)

故障日志 0024:fixme:msctf:KeystrokeMgr_TestKeyUp STUB:(00A3D508) AI分析 这些消息表示Wine对IE内核组件以及IME&#xff08;Input Method Editor&#xff0c;输入法编辑器&#xff09;的支持不完全。特别是涉及文本输入、拖放事件、属性变化通知等功能。 解决 winetrick…

【论文阅读】单词级文本攻击TAAD2.2

TAAD2.2论文概览 0.前言1-101.Bridge the Gap Between CV and NLP! A Gradient-based Textual Adversarial Attack Frameworka. 背景b. 方法c. 结果d. 论文及代码 2.TextHacker: Learning based Hybrid Local Search Algorithm for Text Hard-label Adversarial Attacka. 背景b…

python爬虫(一)

一、python中的NumPy模块&#xff08;数据的存储和处理&#xff09; 这里是下载完成之后的表现 &#xff08;1&#xff09;创建数组 1、使用array&#xff08;&#xff09;函数创建数组 使用array函数可以创建任意维度的的数组 下面是一个创建二维数组的代码示例 下面是代码…

java集合(泛型数据结构)

1.泛型 1.1泛型概述 泛型的介绍 泛型是JDK5中引入的特性&#xff0c;它提供了编译时类型安全检测机制 泛型的好处 把运行时期的问题提前到了编译期间 避免了强制类型转换 泛型的定义格式 <类型>: 指定一种类型的格式.尖括号里面可以任意书写,一般只写一个字母.例如: …

【力扣 - 三数之和】

题目描述 给你一个整数数组 nums &#xff0c;判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i ! j、i ! k 且 j ! k &#xff0c;同时还满足 nums[i] nums[j] nums[k] 0 。请你返回所有和为 0 且不重复的三元组。 注意&#xff1a;答案中不可以包含重复的三元组。…

PostgreSQL开发与实战(6.2)体系结构2

作者&#xff1a;太阳 二、逻辑架构 graph TD A[database] -->B(schema) B -->C[表] B -->D[视图] B -->E[触发器] C -->F[索引] tablespace 三、内存结构 Postgres内存结构主要分为 共享内存 与 本地内存 两部分。共享内存为所有的 background process提供内…

excel中去除公式,仅保留值

1.单个单元格去除公式 双击单元格&#xff0c;按F9. 2.批量去除公式 选中列然后复制&#xff0c;选择性粘贴&#xff0c;选值粘贴

windows server 2019 激活系统时点击“更改产品密钥”无反应的解决方案

一、问题现象 点击“更改产品密钥”没反应。 二、解决方案 使用slmgr命令&#xff1a; 打开命令提示符&#xff08;管理员&#xff09;&#xff0c;然后尝试使用slmgr命令来手动输入密钥和激活Windows。例如&#xff1a; slmgr.vbs /ipk <您的产品密钥>slmgr.vbs /ato 备…

软件测试技术分享 | 测试环境搭建

被测系统的环境搭建&#xff0c;是我们作为软件测试人员需要掌握的技能。 被测系统AUT (Application Under Test) 常见的被测系统即需要被测试的 app&#xff0c;网页和后端服务。大致分为两个方面移动端测试和服务端测试&#xff0c;如下图所示&#xff1a; 常见的被测系统类…

3、Redis Cluster集群运维与核心原理剖析

Redis集群方案比较 哨兵模式 在redis3.0以前的版本要实现集群一般是借助哨兵sentinel工具来监控master节点的状态&#xff0c;如果master节点异常&#xff0c;则会做主从切换&#xff0c;将某一台slave作为master&#xff0c;哨兵的配置略微复杂&#xff0c;并且性能和高可用性…

【C语言】冒泡排序

概念 冒泡排序&#xff08;Bubble Sort&#xff09;是一种简单的排序算法&#xff0c;它重复地遍历要排序的列表&#xff0c;一次比较两个元素&#xff0c;并且如果它们的顺序错误就把它们交换过来。通过多次的遍历和比较&#xff0c;最大&#xff08;或最小&#xff09;的元素…

数智化转型的新篇章:企业如何在「数据飞轮」理念中寻求增长?_光点科技

在当今的数字化浪潮中&#xff0c;企业对数据的渴求与日俱增。数据不再仅是辅助决策的工具&#xff0c;而是成为推动业务增长的核心动力。自从「数据中台」概念降温后&#xff0c;企业纷纷探寻新的数智化路径。在这个过程中&#xff0c;「数据飞轮」作为一种新兴的理念&#xf…

Blazor系统教程(.net8)

Blazor系统教程 1.认识 Blazor 简单来讲&#xff0c;Blazor旨在使用C#来替代JavaScript的Web应用程序的UI框架。其主要优势有&#xff1a; 使用C#编写代码&#xff0c;这可提高应用开发和维护的效率利用现有的NET库生态系统受益于NET的性能、可靠性和安全性与新式托管平台(如…

第三方软件测试报告有效期是多久?专业软件测试报告获取

第三方软件测试报告是在软件开发过程中&#xff0c;由独立的第三方机构对软件进行全面测试和评估后发布的报告。这些第三方机构通常是与软件开发商和用户无关的专业技术机构&#xff0c;具备丰富的测试经验和专业知识。    第三方测试报告具有以下几个好处&#xff1a;   …

阿里云Linux系统MySQL8忘记密码修改密码

相关版本 操作系统&#xff1a;Alibaba Cloud Linux 3.2104 LTS 64位MySQL&#xff1a;mysql Ver 8.0.34 for Linux on x86_64 (Source distribution) MySQL版本可通过下方命令查询 mysql --version一、修改my.cnf文件 文件位置&#xff1a;etc/my.cnf进入远程连接后可以打…

落地灯哪个牌子好?实机测评喜爱度爆表的五款落地灯!

近些年来&#xff0c;由于使用电子产品以及学习压力大的人越来越多&#xff0c;而且越加年轻化&#xff0c;而平时用眼时的不良光线影响着人们的视力健康&#xff0c;不少眼科专家都推荐使用能够带来更好光线效果的落地灯&#xff0c;对此&#xff0c;作为专业的电器测评员&…

Pygame教程05:帧动画原理+边界值检测,让小球来回上下运动

------------★Pygame系列教程★------------ Pygame教程01&#xff1a;初识pygame游戏模块 Pygame教程02&#xff1a;图片的加载缩放旋转显示操作 Pygame教程03&#xff1a;文本显示字体加载transform方法 Pygame教程04&#xff1a;draw方法绘制矩形、多边形、圆、椭圆、弧…

Context

在 Android 开发中&#xff0c;Context 是一个表示应用程序环境的类&#xff0c;它提供了访问应用程序资源和执行应用程序级操作的接口。它是一个抽象类&#xff0c;具体的实现类是 ContextImpl。 Context 类的实例在整个 Android 应用程序中广泛使用&#xff0c;它可以用于执…

Linux-socket套接字

前言 在当今数字化时代&#xff0c;网络通信作为连接世界的桥梁&#xff0c;成为计算机科学领域中至关重要的一部分。理解网络编程是每一位程序员必备的技能之一&#xff0c;而掌握套接字编程则是深入了解网络通信的关键。本博客将深入讨论套接字编程中的基本概念、常见API以及…

国际数字影像产业园:全面推进“AI+”行动,加快标准建设,厚植创新沃土

人工智能作为数字经济时代的重要基础设施、关键技术、先导产业以及赋能引擎&#xff0c;将长期为我国各行业转型升级和数字经济发展提供核心驱动力。树莓集团总部国际数字影像产业园&#xff0c;作为新时代科技与数字产业的交汇点&#xff0c;正全面推进“AI”行动&#xff0c;…