【数据结构】 七大排序详解(贰)——冒泡排序、快速排序、归并排序

文章目录

  • ⚽冒泡排序
    • ⚾算法步骤
    • 🎨算法优化
    • 🥎代码实现:
    • 🏀冒泡排序的特性总结
  • 🧭快速排序
    • ⚽算法思路
      • 📌思路一(Hoare版)
      • 📌思路二(挖坑法)
      • 📌思路三(前后指针)
    • 🎨代码实现:
    • 🌳快速排序优化
      • 📌规模较小时的优化
      • 📌三数取中法
    • 🏀快速排序递归实现
      • 🚩代码实现:
    • 🎡快速排序特性总结
  • 🥎归并排序
    • ⚽基本思想
    • 🏀算法步骤
    • 🛫代码实现:
    • 😎递归实现归并排序
    • 🛬归并排序特性总结
    • 🌴海量数据的排序问题
  • 🐱‍🏍排序算法复杂度及稳定性分析
  • ⭕总结

⚽冒泡排序

==冒泡排序(Bubble Sort)==也是一种简单直观的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢"浮"到数列的顶端。

⚾算法步骤

比较相邻的元素。如果第一个比第二个大,就交换他们两个。

对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。这步做完后,最后的元素会是最大的数。

针对所有的元素重复以上的步骤,除了最后一个。

持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

在这里插入图片描述

🎨算法优化

冒泡排序还有一种优化算法,就是立一个 flag,当在一趟序列遍历中元素没有发生交换,则证明该序列已经有序

直接返回就好

🥎代码实现:

    public  int[] bubbleSort(int[] arr) {int[] array = Arrays.copyOf(arr,arr.length);for(int i = 1;i < array.length ; i ++) {Boolean a = true;for(int j = 0; j < array.length - i; j++) {if(array[j] > array[j + 1]) {swap(array,j,j+1);a = false;}}if(a) {return array;}}return array;}private void swap (int[] arr,int m,int n) {int tmp = arr[m];arr[m] = arr[n];arr[n] = tmp;}

🏀冒泡排序的特性总结

  1. 冒泡排序是一种非常容易理解的排序

  2. 时间复杂度:O(N^2)

  3. 空间复杂度:O(1)

  4. 稳定性:稳定

  5. 什么时候最快
    当输入的数据已经是正序时(都已经是正序了,我还要你冒泡排序有何用啊)。

  6. 什么时候最慢
    当输入的数据是反序时(写一个 for 循环反序输出数据不就行了,干嘛要用你冒泡排序呢,我是闲的吗)。

🧭快速排序

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止

⚽算法思路

📌思路一(Hoare版)

步骤为:

  1. 选取基准值

  2. 从数组右->左找到比基准值小于或等于的值的下标

  3. 从数组右->左找到比基准值大于或等于的值的下标

  4. 交换这两下标的值

  5. 继续执行二操作,直到操作2与操作3相遇

  6. 将基准值放在相遇位置

如下图所示:

在这里插入图片描述

📌思路二(挖坑法)

步骤为:

  1. 选取基准值后,记录下基准值,假设该下标为空,相当于是个“坑”

  2. 从右->左找小于或等于基准值的值,就将该数放入坑中,然后该下标变为新的坑

  3. 从左->右找小于或等于基准值的值,就将该数放入坑中,然后该下标变为新的坑

  4. 回到步骤2继续执行,直到操作2与操作3所找数相同

  5. 将记录下的基准值放回坑里

图示如下:
在这里插入图片描述

📌思路三(前后指针)

步骤及其动图如下:
在这里插入图片描述

🎨代码实现:

    public int[] quickSort(int[] array) {int[] arr = Arrays.copyOf(array,array.length);int left = 0;int right = arr.length - 1;quick(arr,left,right);return arr;}private void quick(int[] array,int begin,int end) {if(begin >= end) {return;}int centre = partition1(array,begin,end);//int centre = partition2(array,begin,end);//int centre = partition3(array,begin,end);quick(array,centre + 1,end);quick(array,begin,centre - 1);}//挖坑法private  int partition1(int[] array,int left,int right) {int tmp = array[left];while (left < right) {while (left< right && array[right] >= tmp) {right--;}array[left] = array[right];while (left< right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}//Hoare版private  int partition2(int[] array,int left,int right) {int tmp = array[left];int i = left;while (left < right) {while (left< right && array[right] >= tmp) {right--;}while (left< right && array[left] <= tmp) {left++;}swap(array,left,right);}swap(array,left,i);return left;}//前后指针法private int partition3(int[] array,int left,int right) {int prev = left ;int cur = left+1;while (cur <= right) {if(array[cur] < array[left] && array[++prev] != array[cur]) {swap(array,cur,prev);}cur++;}swap(array,prev,left);return prev;}private void swap (int[] arr,int m,int n) {int tmp = arr[m];arr[m] = arr[n];arr[n] = tmp;}

🌳快速排序优化

📌规模较小时的优化

每次递归的时候,数据都是再慢慢变成有序的

当数据量少且趋于有序的时候,我们可以直接使用插入排序进行优化

    private void quick(int[] array,int begin,int end) {if(begin >= end) {return;}if(end - begin < 20) {//插入排序//......return;}int centre = partition1(array,begin,end);//int centre = partition2(array,begin,end);//int centre = partition3(array,begin,end);quick(array,centre + 1,end);quick(array,begin,centre - 1);}

📌三数取中法

如果在选取基数时我们发现如果基数一边总是没有数,代码的执行次数会增加很多

所以我们的解决方法为:
选取数组第一个数、中间的数、和最后一个数,进行比较

三数中间的数作为每次的基数

寻找中间数代码如下:

    private  int midThree(int[] array,int left,int right) {int mid = (left + right) / 2;//6  8if (array[left] < array[right]) {if (array[mid] < array[left]) {return left;} else if (array[mid] > array[right]) {return right;} else {return mid;}} else {//array[left] > array[right]if (array[mid] < array[right]) {return right;} else if (array[mid] > array[left]) {return left;} else {return mid;}}}

使用如下:

    private  int partition1(int[] array,int left,int right) {int tmp = midThree(array,left,right);while (left < right) {while (left< right && array[right] >= tmp) {right--;}array[left] = array[right];while (left< right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}//Hoare版private  int partition2(int[] array,int left,int right) {int tmp = midThree(array,left,right);int i = left;while (left < right) {while (left< right && array[right] >= tmp) {right--;}while (left< right && array[left] <= tmp) {left++;}swap(array,left,right);}swap(array,left,i);return left;}

🏀快速排序递归实现

实现思路:

  • 建立一个栈

  • 先让一组数据的起点入栈

  • 再让一组数据的终点出栈

  • 在这里插入图片描述

  • 然后两次出栈,分别作为该数据的起点与终点

  • 然后经过我们上面所写的方法进行排序后

  • 再将两组数据进行入栈

  • 在这里插入图片描述

  • 以此循环直到栈为空

🚩代码实现:

    //快速排序递归实现public int[] quickSortPlus(int[] array) {int[] arr = Arrays.copyOf(array,array.length);Deque<Integer> stack = new LinkedList<>();int left = 0;int right = array.length-1;int pivot = 0;stack.push(left);stack.push(right);while (!stack.isEmpty()) {right= stack.pop();left = stack.pop();pivot = partition(arr,left,right);if(pivot > left+1) {stack.push(left);stack.push(pivot-1);}if(pivot < right-1) {stack.push(pivot+1);stack.push(right);}}return arr;}private  int partition(int[] array,int left,int right) {int tmp = array[left];while (left < right) {while (left< right && array[right] >= tmp) {right--;}array[left] = array[right];while (left< right && array[left] <= tmp) {left++;}array[right] = array[left];}array[left] = tmp;return left;}

🎡快速排序特性总结

  1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序

  2. 时间复杂度:O(N*logN)
    在这里插入图片描述

  3. 空间复杂度:O(logN)

  4. 稳定性:不稳定

🥎归并排序

⚽基本思想

归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and
Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:
在这里插入图片描述

🏀算法步骤

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列;

  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置;

  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置;

  4. 重复步骤 3 直到某一指针达到序列尾;

  5. 将另一序列剩下的所有元素直接复制到合并序列尾。

在这里插入图片描述

🛫代码实现:

    public  void mergeSort1(int[] array) {mergeSortFunc(array,0,array.length-1);}private  void mergeSortFunc(int[] array,int left,int right) {if(left >= right) {return;}int mid = (left+right) / 2;mergeSortFunc(array,left,mid);mergeSortFunc(array,mid+1,right);merge(array,left,right,mid);}private  void merge(int[] array,int start,int end,int mid) {int s1 = start;//int e1 = mid;int s2 = mid+1;//int e2 = end;int[] tmp = new int[end-start+1];int k = 0;//tmp数组的下标while (s1 <= mid && s2 <= end) {if(array[s1] <= array[s2]) {tmp[k++] = array[s1++];}else {tmp[k++] = array[s2++];}}while (s1 <= mid) {tmp[k++] = array[s1++];}while (s2 <= end) {tmp[k++] = array[s2++];}for (int i = 0; i < tmp.length; i++) {array[i+start] = tmp[i];}}

😎递归实现归并排序

public static void mergeSort(int[] array) {int gap = 1;while (gap < array.length) {// i += gap * 2 当前gap组的时候,去排序下一组for (int i = 0; i < array.length; i += gap * 2) {int left = i;int mid = left+gap-1;//有可能会越界if(mid >= array.length) {mid = array.length-1;}int right = mid+gap;//有可能会越界if(right>= array.length) {right = array.length-1;}merge(array,left,right,mid);}//当前为2组有序  下次变成4组有序gap *= 2;}}private  void merge(int[] array,int start,int end,int mid) {int s1 = start;//int e1 = mid;int s2 = mid+1;//int e2 = end;int[] tmp = new int[end-start+1];int k = 0;//tmp数组的下标while (s1 <= mid && s2 <= end) {if(array[s1] <= array[s2]) {tmp[k++] = array[s1++];}else {tmp[k++] = array[s2++];}}while (s1 <= mid) {tmp[k++] = array[s1++];}while (s2 <= end) {tmp[k++] = array[s2++];}for (int i = 0; i < tmp.length; i++) {array[i+start] = tmp[i];}}

🛬归并排序特性总结

  1. 归并的缺点在于需要O(N)的空间复杂度,归并排序的思考更多的是解决在磁盘中的外排序问题。

  2. 时间复杂度:O(N*logN)

  3. 空间复杂度:O(N)

  4. 稳定性:稳定

🌴海量数据的排序问题

外部排序:排序过程需要在磁盘等外部存储进行的排序

前提:内存只有 1G,需要排序的数据有 100G

因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M

  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以

  3. 进行 2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

🐱‍🏍排序算法复杂度及稳定性分析

在这里插入图片描述
在这里插入图片描述

⭕总结

关于《【数据结构】 七大排序详解(贰)——冒泡排序、快速排序、归并排序》就讲解到这儿,感谢大家的支持,欢迎各位留言交流以及批评指正,如果文章对您有帮助或者觉得作者写的还不错可以点一下关注,点赞,收藏支持一下!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72604.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

2023数模A题——定日镜场的优化问题

A题——定日镜场的优化问题 思路&#xff1a;该题主要考察的几何知识和天文学知识&#xff0c;需要不同角度下的镜面和遮挡情况。 资料获取 问题1&#xff1a; 若将吸收塔建于该圆形定日镜场中心&#xff0c;定日镜尺寸均为 6 m6 m&#xff0c;安装高度均为 4 m&#xff0c;且…

波奇学C++:多态

组合和继承 继承是白箱复用(whiter-box-reuse),获得继承类的内部细节 组合是黑盒测试(black-box-reuse),无法得走类的内部实现 class C {// }; //组合 class E { private:C _cc; }; is-a 关系用继承&#xff0c;人-学生&#xff1b;has-a 关系用组合 车-轮胎。 多态&#…

04-MySQL02

1、什么是索引下推&#xff1f; 索引下推&#xff08;index condition pushdown &#xff09;简称ICP&#xff0c;在Mysql5.6的版本上推出&#xff0c;用于优化查询。 需求: 查询users表中 "名字第一个字是张&#xff0c;年龄为10岁的所有记录"。 SELECT * FROM u…

【AWS】实操-保护 Amazon S3 VPC 终端节点通信

文章目录 实验概览目标实验环境任务 1&#xff1a;探索并启动实验环境任务 1.1&#xff1a;探索 Amazon VPC 资源任务 1.2&#xff1a;探索 Amazon EC2 资源任务 1.3&#xff1a;创建 Amazon VPC 终端节点任务 1.4&#xff1a;连接私有 EC2 实例任务 1.5&#xff1a;探索 Amazo…

【最新!七麦下载量analysis参数】逆向分析与Python实现加密算法

文章目录 1. 写在前面2. 请求分析3. 加密分析4. 算法实现 1. 写在前面 之前出过一个关于榜单analysis的分析&#xff0c;有兴趣的可以查看这篇文章&#xff1a;七麦榜单analysis加密分析 最近运营团队那边有同事找到我们&#xff0c;说工作中偶尔需要统计分析一下某APP在一些主…

帆软报表执行sql报SQL command not properly ended

如果你在执行预览SQL时报如下图的错误&#xff1a; 你需要检查一下几点&#xff1a; 1.是否在SQL在有逗号忘记加了 2.是否有括号少了 3.是否在SQL的最后有分号存在&#xff0c;如果有需要去掉&#xff0c;这点是比较坑的&#xff0c;因为SQL最后加分号在oracle数据库中是能够…

普通用户使用spark的client无法更新Ranger策略

普通用户使用spark的client无法更新Ranger策略 报错图片&#xff1a; WARN org.apache.ranger.admin.client.RangerAdminRESTClient: Error getting Roles. secureModetrue, usercaojianxiangUCDIPA.VIATRIS.CC (auth:KERBEROS)&#xff0c;responsef"httpStatusCode&quo…

【项目经验】:elementui表格中表头的多选框换成文字

一.项目需求 表格可以多选&#xff0c;表头都是汉字。。。。类似于这种 二.实现功能 用到的方法 Table Attributes 参数说明类型可选值默认值header-cell-class-name表头单元格的 className 的回调方法&#xff0c;也可以使用字符串为所有表头单元格设置一个固定的 className。…

Vue + Element UI 前端篇(十一):第三方图标库

Vue Element UI 实现权限管理系统 前端篇&#xff08;十一&#xff09;&#xff1a;第三方图标库 使用第三方图标库 用过Elment的同鞋都知道&#xff0c;Element UI提供的字体图符少之又少&#xff0c;实在是不够用啊&#xff0c;幸好现在有不少丰富的第三方图标库可用&…

table 单元格中嵌套子表格 样式撑开问题

如图&#xff0c;表格中的td嵌套表格&#xff0c;里边表格把外层撑开&#xff0c;不能按100%显示&#xff1b; 解决办法 给父级table 加一个table-layout:fixed;样式

SSRF漏洞实战

文章目录 SSRF概述SSRF原理SSRF 危害PHP复现SSRF漏洞检测端口扫描内网Web应用指纹识别攻击内网应用读取本地文件 Weblogic SSRF--Getshell复现SSRF攻击Redis原理漏洞检测端口扫描复现翻车&#xff0c;请看官方复现教程注入HTTP头&#xff0c;利用Redis反弹shell SSRF防御过滤输…

现代C++中的从头开始深度学习:【6/8】成本函数

现代C中的从头开始深度学习&#xff1a;成本函数 一、说明 在机器学习中&#xff0c;我们通常将问题建模为函数。因此&#xff0c;我们的大部分工作都包括寻找使用已知模型近似函数的方法。在这种情况下&#xff0c;成本函数起着核心作用。 这个故事是我们之前关于卷积的讨论的…

OC和Swift混编,导入头文件‘xxx-Swift.h‘ file not found

在OC的项目里加入Swift代码&#xff0c;创建完桥接文件后&#xff0c;需要倒入Swift头文件&#xff0c;头文件的格式为“项目名-Swift.h”。 如下图&#xff0c;我在Xcode上看到我的项目名为YichangPark&#xff0c;导入 #import "YiChangPark-Swift.h" 之后提示 “Y…

喜报 | 再度中标南网项目!AR 开启电力远程运维新智慧

近日&#xff0c;中国南方电网官网发布《2023年南方电网数字平台科技 (广东)有限公司物资品控远程协助软件采购项目中标公告》&#xff0c;ALVA Systems 凭借 ALVA Rainbow 创新应用竞得此标。 随着相关技术的逐步成熟&#xff0c;基础问题远程化解决已经在工业领域广泛应用。 …

NLP(1)--NLP基础与自注意力机制

目录 一、词向量 1、概述 2、向量表示 二、词向量离散表示 1、one-hot 2、Bag of words 3、TF-IDF表示 4、Bi-gram和N-gram 三、词向量分布式表示 1、Skip-Gram表示 2、CBOW表示 四、RNN 五、Seq2Seq 六、自注意力机制 1、注意力机制和自注意力机制 2、单个输出…

同旺科技USB to I2C 适配器烧写 Arduino 模块

所需设备&#xff1a; 内附链接 1、同旺科技USB to I2C 适配器 2、Arduino 模块 硬件连接&#xff1a; 用同旺科技USB to I2C 适配器连接芯片的TX、RX、GND; 打开Arduino IDE编辑工具&#xff0c; 点击“上传”按钮&#xff0c;完成程序的编译和烧录&#xff1b;

基于微信小程序的自习室系统设计与实现,可作为毕业设计

博主介绍&#xff1a;✌程序员徐师兄、7年大厂程序员经历。全网粉丝30W、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ 文章目录 1 简介2 技术栈3 需求分析3.1用户需求分析3.1.1 学生用户3.1.3 管理员用户 4 数据库设计4.4.1 E…

【数据结构】树的基础入门

文章目录 什么是树树的常见术语树的表示树的应用 什么是树 相信大家刚学数据结构的时候最先接触的就是顺序表,栈,队列等线性结构. 而树则是一种非线性存储结构,存储的是具有“一对多”关系的数据元素的集合 非线性 体现在它是由n个有限结点(可以是零个结点)组成一个具有层次关…

HarmonyOS/OpenHarmony(Stage模型)应用开发组合手势(二)并行识别

并行识别组合手势对应的GestureMode为Parallel。并行识别组合手势中注册的手势将同时进行识别&#xff0c;直到所有手势识别结束。并行识别手势组合中的手势进行识别时互不影响。 以在一个Column组件上绑定点击手势和双击手势组成的并行识别手势为例&#xff0c;由于单击手势和…

Apinto 网关 V0.14 版本发布,6 大插件更新!

大家好&#xff01; 距离上次更新已经过去一段时间了&#xff0c;这段日子里我们一直在酝酿新的功能&#xff0c;本次的迭代将给大家带来 6 大插件的更新~一起来看看有哪些变化吧&#xff01; 新特性 1. 新增 额外参数v2 插件&#xff0c;支持对转发参数进行加密、拼接等操作…