调研图基础模型(Graph Foundation Models)

🍉 CSDN 叶庭云https://yetingyun.blog.csdn.net/


图基础模型(Graph Foundation Models,简称 GFMs) 是一种经过预训练的图大模型,旨在处理不同领域的图数据和任务。让我们详细探讨一下这个概念。

Github BUPT GAMMA Lab:GFMPapers: Must-read papers on graph foundation models (GFMs)

有关的这篇综述论文:https://arxiv.org/abs/2310.11829

什么是基础模型?

基础模型是指在广泛数据上进行预训练的模型,可以适应各种下游任务。这些模型在自然语言处理(NLP)和计算机视觉(CV)等领域取得了显著成功。

基础模型的架构和训练策略的进步赋予了它们独特的特性,如涌现(Emergence)和同质化(Homogenization),使它们成为众多下游人工智能应用的主要构建模块。涌现表示随着数据和模型规模的扩大,它可能会自发地展现新颖的能力。同时,同质化暗指模型的多功能性,使其能够在各种应用中部署。

图学习的挑战

图机器学习经历了从浅层方法到深度学习方法的转变。深度图学习方法,如图神经网络(GNNs),通过引入消息传递机制改变了图机器学习的格局。然而,GNNs 模型仍然存在表达能力和泛化性方面的问题,尤其是考虑到不断扩大的数据集和不断增加的任务范围。

许多图神经网络方法的一个显著局限性是它们过于依赖有监督学习,这可能导致在面对稀疏和噪声数据时鲁棒性和泛化能力不足。为了增强图神经网络的泛化能力,自监督学习(Self-Supervised Learning)已经成为图表示学习中的一种有前景的方法。这些方法的目标是生成可泛化到不同下游任务的图表示,但它们仍然需要使用下游图学习场景的标签进行微调。然而,这种对下游任务的标签数据的依赖可能会限制它们在实际情况中的泛化能力,特别是在难以获取高质量标签的情况下

基础模型在自然语言处理中取得显著成功

大语言模型(LLMs)作为基础模型在 NLP 中取得显著成功。它们不仅可以处理文本,还可以处理图像、视频、音频和多模态输入。这种多功能性使它们在计算机视觉、音频信号处理、推荐系统等各种任务中表现出色。

图基础模型的概念

图基础模型(GFMs) 是一个在广泛的图数据上预先训练的大模型,用于在不同的下游图学习任务中进行微调。GFMs 具备两个主要特征:涌现和同质化。涌现指的是仅在大规模图模型中显现的新能力,而同质化表示模型可以适应不同类型的图学习任务。

目前还没有明确的解决方案来设计和实现 GFMs,但研究人员已经探索了基于 GNN、基于 LLM 以及 GNN+LLM 的不同方法。GFMs 的发展将使其具备更强的图表征学习能力、可迁移性,并适用于更复杂的图数据和任务。

GraphGPT

论文地址:https://arxiv.org/abs/2310.13023

Github 地址:https://github.com/HKUDS/GraphGPT

在这里插入图片描述

总得来说,将大语言模型与图学习结合是一项重大的挑战。首先,在图的结构信息和语言空间之间实现适当的对齐需要深入的研究。同时,如何引导大语言模型有效地理解图的结构信息,以及如何赋予大语言模型对于图学习下游任务逐步推理的能力,都是当前面临的关键问题。

GraphGPT 框架将图结构模型和大语言模型进行参数对齐,利用双阶段图指令微调范式提高模型对图结构的理解能力和适应性,再整合 ChatGPT 提高逐步推理能力,实现了更快的推理速度和更高的图任务预测准确率。

用 “文本-图” 对齐编码结构信息:通过任意的图编码器(例如 Graph Transformer)和文本编码器(例如普通 Transformer)获得编码后的图表示和文本表示。接着,通过对比学习进行不同维度的 “文本-图” 对齐。

两阶段图指令微调

  • 在图指令微调范式的第一阶段,采用了自监督的指令微调策略,该策略将图结构的专有知识融入到语言模型之中,增强了其推理能力,并使其能够准确地捕获图结构中的关联信息。具体而言,这项研究构建了一个结构感知的图匹配任务,指导语言模型利用自然语言标签来识别图中的各个节点。这种指令任务在确切地将图节点与其相关的文本描述关联起来时发挥了核心作用,进而深化了模型对图结构数据的理解。

  • 在第二阶段,提出了特定任务指令微调,旨在定制模型的推理行为,以满足不同图学习任务的特定约束和要求,如节点分类或链接预测。通过使用任务特定的图指令对大语言模型进行微调,引导模型生成更适合当前图学习任务的响应,进一步提高了模型在处理各种图学习任务时的适应性和性能。

  • 最后,通过思维链(Chain-of-Thought)将闭源大语言模型(如,ChatGPT)蒸馏整合到 GraphGPT 中,增强了其逐步推理能力,极大地改善了分布偏移带来的性能下降。

经过上述两个训练阶段,GraphGPT 现在可以理解给定的图结构,并在提供的图中执行各种下游任务。在生成的输出中,大语言模型不仅对节点类型进行预测,还为每个预测提供了详细的解释,以确保模型的决策过程是清晰和可追踪的。

GraphGPT 的贡献

  • 将图领域特定的结构知识与大语言模型的推理能力对齐,以提高图学习的泛化。

  • 提出的方法旨在通过图指令微调范式将大语言模型与图结构数据对齐。此范式结合了自监督指令微调,增强了大语言模型对图结构知识的理解和推理能力。此外,引入了具体任务的指令微调,以提高模型在不同图学习任务中的适应性。

  • 实验评估了 GraphGPT 在有监督和零样本图学习任务上的表现。通过与最先进的基线进行比较,GraphGPT 展现出在各种设置中优越的泛化能力。

总结要点

  1. 图神经网络(GNN)在处理和学习图数据方面强大,但对稀疏和有噪声的数据鲁棒性和泛化性能不佳。

  2. 自监督学习提高图神经网络泛化性能的潜力,但仍需使用下游任务标签进行微调,限制了泛化性能。

  3. 香港大学数据智能实验室的 GraphGPT 结合图结构知识和大型语言模型,提升图学习任务性能。

  4. GraphGPT 采用双阶段的图指令微调方法,增强大型语言模型对图结构的理解和推理能力。

  5. GraphGPT 在有监督和零样本图学习任务上展现出优越的泛化能力,超过基线模型。

  6. GraphGPT 通过思维链蒸馏方法提升逐步推断能力,显著提高复杂图学习任务性能。

  7. GraphGPT 训练和推理效率高,处理大规模图数据,减少参数和计算资源消耗。

2023 NeurIPS New Frontiers in Graph Learning Workshop - Graph Meets LLMs: Towards Large Graph Models

论文地址:https://arxiv.org/abs/2308.14522

图大模型是一种在图领域应用的大模型,具有扩展定律特征,能够理解图的结构和属性,具备处理新颖图数据集和图推理能力,广泛应用于多个领域。

文章概览要点

  1. 清华大学首次提出图大模型的概念,旨在推广大模型在图领域的应用。

  2. 图大模型具有扩展定律特征,随着模型大小、数据集大小和训练计算量的增加,性能持续优化,提升对图数据的理解能力。

  3. 图大模型需要理解图的结构和属性,图预训练是有前途的方法,减少对标签的依赖,赋予模型生成图的能力。

  4. 有效的图大模型应具备理解图上下文和处理新颖图数据集的能力,与少样本/零样本图学习、多任务图学习和图分布外泛化能力相关。

  5. 图推理是处理图任务的常见方法,包括分析拓扑属性、多跳邻域推理和处理全局属性和模式等,图神经网络和 Graph Transformer 是主流的图深度学习架构。

  6. 图大模型的开发依赖于高质量的图数据集,需要收集更多多样性的图数据,以确保模型的有效性。

  7. 图大模型在推荐系统、知识图谱、分子构建、金融、代码和程序、城市计算与交通运输等领域有广泛应用。

这篇文章讨论了图与大型语言模型(LLM)的结合,以及这种结合在处理复杂关系和生物数据等实际应用中的重要性。文章提出了一个新的分类法,将现有方法分为三类,根据LLM在图相关任务中的角色(增强器、预测器和对齐组件)进行组织。此外,文章还讨论了现有研究的局限性,并指出了未来研究的可能方向。

  • 图与 LLMs 的结合:研究者们将图和 LLMs 结合起来,以处理包含文本属性的节点的图,这在多个领域都取得了成功。

  • LLMs 的角色分类:LLMs 在图相关任务中的角色可以分为增强器、预测器和对齐组件三类。

这篇论文提出了一种新颖的概念原型,用于设计具有大语言模型(LLMs)的多功能图学习方法,重点关注 “在哪里” 和 “如何” 方面。从 “在哪里” 角度出发,总结了包括任务定义、图数据特征工程、模型选择和优化、部署和提供服务等四个关键图学习程序,在更广泛的范围内探索了 LLMs 在这些程序中的应用场景。在 “如何” 方面,将 LLMs 的能力与每个程序的要求进行了对齐。

这项研究指出图表示学习是图中心任务中的一个关键步骤,已经取得了显著进展。早期技术通常在端到端的设置中操作,性能在很大程度上依赖于大量标记数据的可用性。这一约束促使图上的小样本学习的出现,其中每个任务只有少量特定于任务的标签可用。鉴于该领域的丰富文献,本调查努力综合最近的发展,提供比较洞察,并识别未来的方向。研究者将现有研究系统地分类为三大类:元学习方法、预训练方法和混合方法,每个类别中都有更细致的分类,以帮助读者在方法选择过程中。在每个类别中,分析这些方法之间的关系,并比较它们的优势和局限。最后,概述了图上小样本学习未来的潜在方向,以促进该领域持续的创新。

小结

大模型在自然语言处理(NLP)和计算机视觉(CV)领域均取得了显著进展,催生了一系列令人瞩目的应用,如 ChatGPT 和 Segment Anything Model。但在图学习领域,如何建立这样的基础模型,以及是否真的可以有一个统一的图学习基础模型,这些问题仍然是个未解之谜。因为不同的图结构在 “语义” 上有很大的差异,难以通过一个单一的模型实现跨数据集和多任务的图结构建模。GraphGPT 的研究借助大语言模型出色的语义建模能力,并通过图指令微调技术赋予其结构化理解,为图基础模型提供了一个可能的发展路径。

对 Data-Centric 图学习的思考:基础模型的崛起凸显了以数据为核心的人工智能(Data-Centric AI)的潜力和优势。但由于不同图结构间的“结构关联” 不能像 NLP 中那样转化为统一的 token 表示,或像 CV 中转化为像素表示,因此如何确立和推进 Data-Centric 图学习的概念仍是个开放性问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/725617.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

详解openGauss客户端工具gsql的高级用法

前言: gsql是openGauss提供在命令行下运行的数据库连接工具,可以通过此工具连接服务器并对其进行操作和维护,除了具备操作数据库的基本功能,gsql还提供了若干高级特性,便于用户使用。 gsql的基本功能 连接数据库&…

https 加密解密过程是什么?

HTTPS 加密通信过程中,主要涉及到以下几个步骤: 握手阶段(handshake phase): 客户端向服务器端发送一个加密通信请求,并提供自己的加密能力列表,以及一个随机生成的密钥(Pre-master secret)。…

uniapp让输入框保持聚焦状态,不会失去焦点

使用场景:当输入框还有发送按钮的时候,点击发送希望软键盘不消失,还可以继续输入,或者避免因输入图片标签造成的屏闪问题 多次尝试后发现一个很实用的方法,适用input输入框和editor输入框 解决办法:把cli…

AXI4总线解析

一、读地址 AWVALID和AWREADY同时为高时,在这个上升沿,图中黄线,将接下来的数据写入地址40000000中。 在

基于状态机的按键消抖实现

摸鱼记录 Day_14 !(^O^)y review 在day_13中以按键状态判断为例学习了状态分析基于状态机的按键消抖原理-CSDN博客 分析得到了下图: 今日任务:完成此过程 !(^O^)y 小梅哥对应视频: 15B 基于状态机的按键消抖Verilog实现_哔哩哔哩…

springboot/ssm图书管理系统Java图书馆图书统计系统web

springboot/ssm图书管理系统Java图书馆图书统计系统web 基于springboot(可改ssm)vue项目 开发语言:Java 框架:springboot/可改ssm vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql …

DataFunSummit 2023:洞察现代数据栈技术的创新与发展(附大会核心PPT下载)

随着数字化浪潮的推进,数据已成为企业竞争的核心要素。为了应对日益增长的数据挑战,现代数据栈技术日益受到业界的关注。DataFunSummit 2023年现代数据栈技术峰会正是在这样的背景下应运而生,汇聚了全球数据领域的精英,共同探讨现…

Linux 文件操作命令

1 文件与目录操作 cd /home 进入 ‘/home’ 目录 cd .. 返回上一级目录cd ../.. 返回上两级目录cd - 返回上次所在目录cp file1 file2 将file1复制为file2cp -a dir1 dir2 复制一个目录 cp -a /tmp/dir1 . 复制一个…

nginx作为tcp的负载均衡

背景: 之前总以为nginx只能当静态资源web容器和web的负载均衡,现在才知道原来也可以当tcp的负载均衡。现在我们项目测试服就是一个nginx对应了2个测试服的负载均衡。配置如下: [rootlocalhost conf]# cat nginx.conf#user nobody; worker_processes …

【Qt】初识Qt

文章目录 一. 行业岗位介绍二. 什么是客户端?三. GUI 开发的各自技术方案四. 什么是框架?五. Qt 的发展史五. Qt 支持的系统六. Qt 的优点 一. 行业岗位介绍 二. 什么是客户端? 既然 Qt 是用来进行客户端开发的,那我们就要了解什…

如何保证ES和数据库的数据一致性?

在业务中,我们通常需要把数据库中的数据变更同步到ES中,那么如何保证数据库和ES的一致性呢?通常有以下几种做法: 双写 在代码中,对数据库和ES进行双写,并且先操作本地数据库,后操作ES&#xff…

Ubuntu20.04安装并配置vscode

Ubuntu20.04安装并配置vscode vscode安装miniconda安装创建虚拟python3.8环境pytorch和匹配的cuda安装 vscode安装 VSCode可以通过 Snapcraft 商店或者微软源仓库中的一个 deb 软件包来安装。 我们这里选用安装VSCode snap版,打开你的终端(CtrlAltT)并且运行下面的…

Apache Paimon 使用之 Creating Table

1.创建 Catalog 管理的 Tables 在Paimon Catalog中创建的Tables由Catalog管理,当Tables从Catalog中删除时,其table files也将被删除。 当使用Paimon Catalog,创建一个名为MyTable的managed table,在Catalog的default数据库中有五…

px2rem实现vue项目响应式布局

第一步 首先需要在项目中安装px2rem插件 npm install postcss-px2rem px2rem-loader --save 第二步 在项目src目录下新建util文件夹,在util文件夹下新建rem.js文件,内容如下: // rem等比适配配置文件 // 基准大小 const baseSize 14 //…

【机器学习300问】27、什么是决策树?

〇、两个预测任务 (1)任务一:银行预测偿还能力 当前,某银行正致力于发掘潜在的放贷用户。他们掌握了每位用户的三个关键特征:房产状况、婚姻状况以及年收入。此外,银行还拥有过往这些用户的债务偿还能力的…

刚工作菜鸟的小总结2

刚工作菜鸟的小总结2 1. using 关键字 using关键字可以用来定义一个类型的别名。例如 using SI_Error = int ,它的作用是将 SI_Error 这个名称与 int 类型进行关联,也就是说在后续代码中,可以使用 SI_Error 来代替 int 类型。如果程序中出现了 SI_Error ,我们就能清晰知道…

c/c++ 指针

参考链接:https://blog.csdn.net/soonfly/article/details/51131141 指针是一个特殊的变量,它里面存储的数值被解释成为内存里的一个地址。 一、指针定义 复杂指针定义涉及较多运算符,分析指针功能从变量名处起,根据运算符优先级结合,一步一步分析。首…

Linux系统——LVS-DR群集部署及拓展

目录 引言 1.LVS的工作模式及其工作过程 2.列举出LVS调度算法 3.LVS调度常见算法(均衡策略) 3.1固定调度算法:rr,wrr,dh,sh 3.2动态调度算法:wlc,lc,lblc 4.LVS三种工作模式区别 一、I…

前端每日一练:vue3 为什么要用 proxy 替换 Object.defineproperty ?为什么只对对象劫持,而要对数组进行方法重写?

vue3 为什么要用 proxy 替换 Object.defineproperty ? Vue 3 在设计上选择使用 Proxy 替代 Object.defineProperty 主要是为了提供更好的响应性和性能。​Object.defineProperty 是在 ES5 中引入的属性定义方法,用于对对象的属性进行劫持和拦截。Vue 2.…

更快更强,Claude 3全面超越GPT4,能归纳15万单词

ChatGPT4和Gemini Ultra被Claude 3 AI模型超越了? 3月4日周一,人工智能公司Anthropic推出了Claude 3系列AI模型和新型聊天机器人,其中包括Opus、Sonnet和Haiku三种模型,该公司声称,这是迄今为止它们开发的最快速、最强…