Zynq—AD9238数据采集DDR3缓存千兆以太网发送实验(前导)
Zynq—AD9238数据采集DDR3缓存千兆以太网发送实验(一)
Zynq—AD9238数据采集DDR3缓存千兆以太网发送实验(三)
五、实验目的
本次实验使用电脑上的网络调试助手,将命令帧通过以太网芯片RTL8211(RGMII接口)发送至ACZ7015开发板,提取UDP报文内容转换成控制命令,从而实现对ACM9238模块采样频率、数据采样个数以及采样通道的配置。
配置完成之后,ACM9238模块开始采集数据,将采集的数据存储至DDR3中,然后通过网口以UDP协议传输到电脑。用户可以在电脑上通过网口调试工具进行指令的下发,并以文件的形式保存接收到的数据,然后使用MATLAB软件进行进一步的数据处理分析。
PL 部分的模块说明如下:
- pll 模块: 锁相环模块, 输入时钟 50M, 由 PS 输出给 PL; 输出 100M 的时钟给到 DDR3 控制器使用; 输出 50M 的时钟给其它模块使用。
- eth_receive_cmd 模块: 以太网接收命令模块, 对以太网接收到的数据进行分析, 将接收的数据转换成相应的控制数据并输出到对应的模块。
- ad9238_ctrl 模块: ACM9238 控制器模块, 该模块内部包含速度控制模块,以及数据位宽转换模块。
- state_ctrl 模块: ADC 采集数据 DDR3 缓存以太网发送状态控制模块, 协调各个模块的信号控制, 程序状态的总控制模块。
- fifo_axi4_adapter 模块: fifo 接口到 AXI4 接口的转换模块(含 2 个 FIFO)。
六、ACM9238模块
两路,
采样上限50Msps,如果期望以1Msps 的采样速率采样, 则只需要每间隔 50 个采样数据取一个结果存储或使用, 其他 49 个数据直接舍弃。不建议降低ADC芯片的时钟信号。
七、设计实例
7.1模块设计
7.1.1 eth_receive_cmd模块
将以太网接收到的数据进行解析, 得到控制命令。
(1)eth_udp_rx_gmii模块和rgmii_to_gmii模块
(2)mmcm模块
锁相环模块,将 rgmii 接口时钟信号 rgmii_rx_clk_i 偏移90 °得到 rgmii_rx_clk 时钟信号。(为了在时钟信号的上升沿/下降沿取数据时,取得数据刚好是数据信号 rgmii_rxd 的正中间, 使得采样的数据处于最稳定的状态。)
锁相环IP配置
(3)fifo_rx模块
使用该 IP 核解决采集过程中会出现的跨时钟域数据交互问题(以太网125MHz,ACM9238-50MHz)。
(4)eth_cmd模块
接收转命令模块。
//非空时产生FIFO读请求信号
always@(posedge clk or negedge reset_n)
if(!reset_n)fifo_rd_req <= 1'b0;
else if(!rx_empty)fifo_rd_req <= 1'b1;
elsefifo_rd_req <= 1'b0;//获得帧命令数据
always@(posedge clk)
if(fifo_rd_req)begindata_0[7] <= #1 fifodout;data_0[6] <= #1 data_0[7];data_0[5] <= #1 data_0[6];data_0[4] <= #1 data_0[5];data_0[3] <= #1 data_0[4];data_0[2] <= #1 data_0[3];data_0[1] <= #1 data_0[2];data_0[0] <= #1 data_0[1];
end//判断帧命令数据
always@(posedge clk or negedge reset_n)
if(!reset_n)beginaddress <= 0;cmd_data <= 32'd0;cmdvalid <= 1'b0;
end
else if(fifo_rx_done)beginif((data_0[0]==8'h55)&&(data_0[1]==8'hA5)&&(data_0[7]==8'hF0))begincmd_data[7:0] <= #1 data_0[6];cmd_data[15:8] <= #1 data_0[5];cmd_data[23:16] <= #1 data_0[4];cmd_data[31:24] <= #1 data_0[3];address <= #1 data_0[2];cmdvalid <= #1 1;endelsecmdvalid <= #1 0;
end
else
cmdvalid <= #1 0;
(5)cmd_rx模块
接收数据转换为控制数据。
寄存器说明:
always@(posedge clk or negedge reset_n)
if(!reset_n)beginChannelSel <= 2'b00;DataNum <= 32'd0;ADC_Speed_Set <= 32'd0;RestartReq <= 1'b0;
end
else if(cmdvalid)begincase(cmd_addr)0: RestartReq <= 1'b1;1: ChannelSel <= cmd_data[1:0];2: DataNum <= cmd_data[31:0];3: ADC_Speed_Set <= cmd_data[31:0];default:;endcase
end
elseRestartReq <= 1'b0;
7.1.2 ad9238_ctrl 模块
控制ADC的采样速率,将12位数据转换为16位数据。
(1)speed_ctrl模块
always@(posedge clk or negedge reset_n)
if(!reset_n)div_cnt <= 0;
else if(ad_sample_en)beginif(div_cnt >= div_set)div_cnt <= 0;elsediv_cnt <= div_cnt + 1'd1;
end
elsediv_cnt <= 0;always@(posedge clk or negedge reset_n)
if(!reset_n)adc_data_en <= 0;
else if(div_cnt == div_set)adc_data_en <= 1;
elseadc_data_en <= 0;
(2)ad_12bit_to_16bit模块
always @(posedge clk)ad_out_valid <= ad_sample_en;assign s_ad_in1 = ad_in1 + 12'd2048;
assign s_ad_in2 = ad_in2 + 12'd2048;always @(posedge clk)
if(ad_sample_en && ch_sel == 2'b01)ad_out<={4'd0,s_ad_in1};//这样补 0 为了适应上位机
else if(ad_sample_en && ch_sel == 2'b10)ad_out<={4'd0,s_ad_in2};//
else if(ad_sample_en && ch_sel == 2'b00)ad_out<={4'd0,adc_test_data};
elsead_out <= 16'd0;
7.1.3 state_ctrl 模块
控制信号的产生以及 ADC 何时启动数据传输。
localparam IDLE = 4'd0; //空闲状态
localparam DDR_WR_FIFO_CLEAR = 4'd1; //DDR 写 FIFO 清除状态
localparam ADC_SAMPLE = 4'd2; //ADC 采样数据状态
localparam DDR_RD_FIFO_CLEAR = 4'd3; //DDR 读 FIFO 清除状态
localparam DATA_SEND_START = 4'd4; //数据发送状态
localparam DATA_SEND_WORKING = 4'd5; //数据发送完成状态
(1)IDLE
//ADC 模块开始采样标志信号寄存
always@(posedge clk or posedge reset)begin
if(reset)start_sample_rm <= 1'b0;
else if(state==IDLE)start_sample_rm <= start_sample;
elsestart_sample_rm <= 1'b0;
end/*状态切换IDLE->DDR_WR_FIFO_CLEAR
beginif(start_sample_rm) begin //DDR 初始化完成并且产生启动采样信号state <= DDR_WR_FIFO_CLEAR; //进入写 FIFO 清除状态endelse beginstate <= state;end
end
*/
(2)DDR_WR_FIFO_CLEAR
//延时10个节拍
always@(posedge clk or posedge reset)begin
if(reset)wrfifo_clr_cnt<=0;
else if(state==DDR_WR_FIFO_CLEAR)//如果进入了清 fifo 状态
beginif(wrfifo_clr_cnt==9)wrfifo_clr_cnt<=5'd9;elsewrfifo_clr_cnt<=wrfifo_clr_cnt+1'b1;
end
elsewrfifo_clr_cnt<=5'd0;
end//给清FIFO信号足够的拉高时间
always@(posedge clk or posedge reset)begin
if (reset)wrfifo_clr<=0;
else if(state==DDR_WR_FIFO_CLEAR)beginif(wrfifo_clr_cnt==0||wrfifo_clr_cnt==1||wrfifo_clr_cnt==2)wrfifo_clr<=1'b1;elsewrfifo_clr<=1'b0;end
elsewrfifo_clr<=1'b0;
end/*状态切换DDR_WR_FIFO_CLEAR->ADC_SAMPLE
beginif(!wrfifo_full && (wrfifo_clr_cnt==9))state<=ADC_SAMPLE;elsestate<=DDR_WR_FIFO_CLEAR;
end
*/
(3)ADC_SAMPLE
//根据ADC输出使能信号计数
always@(posedge clk or posedge reset)begin
if(reset)adc_sample_cnt<=1'b0;
else if(state==ADC_SAMPLE)beginif(adc_data_en)adc_sample_cnt<=adc_sample_cnt+1'b1;elseadc_sample_cnt<=adc_sample_cnt;
end
elseadc_sample_cnt<=1'b0;
end//产生采样使能信号给其他模块
always@(posedge clk or posedge reset)begin
if(reset)ad_sample_en<=0;
else if(state==ADC_SAMPLE)ad_sample_en<=1;
elsead_sample_en<=0;
end/*状态切换ADC_SAMPLE->DDR_RD_FIFO_CLEAR
beginif((adc_sample_cnt>=set_sample_num-1'b1)&& adc_data_en)state<=DDR_RD_FIFO_CLEAR;elsestate<=state;
end
*/
(4)DDR_RD_FIFO_CLEAR
//延时10个节拍
always@(posedge clk or posedge reset)begin
if(reset)rdfifo_clr_cnt<=0;
else if(state==DDR_RD_FIFO_CLEAR)//如果进入了清 fifo 状态
beginif(rdfifo_clr_cnt==9)rdfifo_clr_cnt<=5'd9;elserdfifo_clr_cnt<=rdfifo_clr_cnt+1'b1;
end
elserdfifo_clr_cnt<=5'd0;
end//给清FIFO信号足够的拉高时间
always@(posedge clk or posedge reset)begin
if (reset)rdfifo_clr<=0;
else if(state==DDR_RD_FIFO_CLEAR)
beginif(rdfifo_clr_cnt==0||rdfifo_clr_cnt==1||rdfifo_clr_cnt==2)rdfifo_clr<=1'b1;
elserdfifo_clr<=1'b0;
end
elserdfifo_clr<=1'b0;
end/*状态切换DDR_RD_FIFO_CLEAR->DATA_SEND_START
beginif(!rdfifo_empty && (rdfifo_clr_cnt==9))beginstate<=DATA_SEND_START;endelsestate<=state;
end
*/
(5)DATA_SEND_START
/*状态切换DATA_SEND_START->DATA_SEND_WORKING
beginstate <= DATA_SEND_WORKING;
end
*/
(6)DATA_SEND_WORKING
//发送数据计数
always@(posedge clk or posedge reset)begin
if(reset)send_data_cnt<=32'd0;
else if(state==IDLE)send_data_cnt<=32'd0;
else if(rdfifo_rden)send_data_cnt<=send_data_cnt+1;
elsesend_data_cnt<=send_data_cnt;
end//DDR数据存到以太网缓存
always@(posedge clk or posedge reset)
if(reset) begineth_fifo_wrreq <= 1'b0;eth_fifo_wrdata <= 'd0;
end
else if(rdfifo_rden) begineth_fifo_wrreq <= 1'b1;eth_fifo_wrdata <= rdfifo_dout;
end
else begineth_fifo_wrreq <= 1'b0;eth_fifo_wrdata <= 'd0;
end/*状态切换DATA_SEND_WORKING->IDLE、DATA_SEND_WORKING->DATA_SEND_WORKING
beginif(send_data_cnt >= set_sample_num-1'b1) beginrdfifo_rden <= 1'b0;state <= IDLE;endelse beginrdfifo_rden <= 1'b1;state <= DATA_SEND_WORKING;end
end
*/
7.1.4 fifo_axi_adapter模块
看文章开头:Zynq—AD9238数据采集DDR3缓存千兆以太网发送实验(一)。
S_IDLE:
beginif(start)next_state = S_ARB;elsenext_state = S_IDLE;
end
module fifo_axi4_adapter #(parameter FIFO_DW = 16 ,parameter WR_AXI_BYTE_ADDR_BEGIN = 0 ,parameter WR_AXI_BYTE_ADDR_END = 1023 ,parameter RD_AXI_BYTE_ADDR_BEGIN = 0 ,parameter RD_AXI_BYTE_ADDR_END = 1023 ,parameter AXI_DATA_WIDTH = 128 ,parameter AXI_ADDR_WIDTH = 28 ,parameter AXI_ID = 4'b0000,parameter AXI_BURST_LEN = 8'd31 //burst length = 32
)
(input start ,// clock resetinput clk ,input reset ,// wr_fifo wr Interfaceinput wrfifo_clr ,input wrfifo_clk ,input wrfifo_wren ,input [FIFO_DW-1:0] wrfifo_din ,output wrfifo_full ,output [15:0] wrfifo_wr_cnt ,// rd_fifo rd Interfaceinput rdfifo_clr ,input rdfifo_clk ,input rdfifo_rden ,output [FIFO_DW-1:0] rdfifo_dout ,output rdfifo_empty ,output [15:0] rdfifo_rd_cnt ,// Master Interface Write Address Portsoutput [3:0] m_axi_awid ,output [AXI_ADDR_WIDTH-1:0] m_axi_awaddr ,output [7:0] m_axi_awlen ,output [2:0] m_axi_awsize ,output [1:0] m_axi_awburst ,output [0:0] m_axi_awlock ,output [3:0] m_axi_awcache ,output [2:0] m_axi_awprot ,output [3:0] m_axi_awqos ,output [3:0] m_axi_awregion,output m_axi_awvalid ,input m_axi_awready ,// Master Interface Write Data Portsoutput [AXI_DATA_WIDTH-1:0] m_axi_wdata ,output [AXI_DATA_WIDTH/8-1:0] m_axi_wstrb ,output m_axi_wlast ,output m_axi_wvalid ,input m_axi_wready ,// Master Interface Write Response Portsinput [3:0] m_axi_bid ,input [1:0] m_axi_bresp ,input m_axi_bvalid ,output m_axi_bready ,// Master Interface Read Address Portsoutput [3:0] m_axi_arid ,output [AXI_ADDR_WIDTH-1:0] m_axi_araddr ,output [7:0] m_axi_arlen ,output [2:0] m_axi_arsize ,output [1:0] m_axi_arburst ,output [0:0] m_axi_arlock ,output [3:0] m_axi_arcache ,output [2:0] m_axi_arprot ,output [3:0] m_axi_arqos ,output [3:0] m_axi_arregion,output m_axi_arvalid ,input m_axi_arready ,// Master Interface Read Data Portsinput [3:0] m_axi_rid ,input [AXI_DATA_WIDTH-1:0] m_axi_rdata ,input [1:0] m_axi_rresp ,input m_axi_rlast ,input m_axi_rvalid ,output m_axi_rready
);
7.1.5 eth_send_data 模块
将DDR读出的ADC数据发送到电脑端。
(1)fifo_tx模块
First Word Fall Through( FWFT)可以不需要读命令, 自动将最新的数据放在 dout 上。
(2)eth_send_ctrl模块
以太网帧最大长度 1518 字节(数据段 1500 字节) , 其中数据段 1500 字节还包括 20 字节 IP 报文头部和 8 字节 UDP 报文头部, 所以数据帧发送的ACM9238 采集的数据最大长度为 1472 字节。
always@(posedge clk125M or negedge reset_n)if(!reset_n) beginpkt_tx_en <= 1'd0;pkt_length <= 16'd0;data_num <= 32'd0;state <= 0;cnt_dly_time <= 28'd0;endelse begincase(state)0://得到 pkt_length 信号的初始值beginif(restart_req)begindata_num <= total_data_num;if((total_data_num << 1) >= 16'd1472)beginpkt_length <= 16'd1472; //一个数据2个字节state <= 1;endelse if((total_data_num << 1) > 0)beginpkt_length <= total_data_num << 1; //一个数据2个字节state <= 1;endelse beginstate <= 0;endendend1: beginif(fifo_rd_cnt >= (pkt_length -2)) beginpkt_tx_en <= 1'd1;state <= 2;endelse beginstate <= 1;pkt_tx_en <= 1'd0;endend2:beginpkt_tx_en <= 1'd0;if(eth_tx_done)begindata_num <= data_num - pkt_length/2;state <= 3;endend3:if(cnt_dly_time >= cnt_dly_min)beginstate <= 4;cnt_dly_time <= 28'd0;endelse begincnt_dly_time <= cnt_dly_time + 1'b1;state <= 3;end4:beginif(data_num * 2 >= 16'd1472)beginpkt_length <= 16'd1472;state <= 1;endelse if(data_num * 2 > 0)beginpkt_length <= data_num * 2;state <= 1;endelse beginstate <= 0;endenddefault:state <= 0;endcaseend