浅谈马尔科夫链蒙特卡罗方法(MCMC)算法的理解

1.解决的问题

计算机怎么在任意给定的概率分布P上采样?首先可以想到把它拆成两步:

(1)首先等概率的从采样区间里取一个待定样本x,并得到它的概率为p(x)

(2)然后在均匀分布U[0,1]上取一个值,如果这个值高于了样本出现的概率p(x),那么就舍弃掉这个待定样本,如果低于或等于这个值就保留。

不断重复这个步骤,我们就能得到满足概率分布P的样本X。

这个方法看似有效,但存在一个致命的问题,那就是慢,因为概率p的均值,随着采样的区域增大而减小【如果P是多维概率分布,那么随着维度不断增大,那么这个值将趋近于0,也就是维度灾难】,那么就意味着这个样本被保留下来的概率非常小。

那么怎么改进?

我们把上述的第(2)步改一下,不再用均匀U[0,1]进行采样,而是用U[0,max(p)],而选取的规则变为,如果从均匀分布U[0,max(p)]里取得的值u高于p(x),那么就保留该样本。

这样能够保证,至少有一个可能出现的样本在概率区间接受率为1。

这种改进比第一种的命中率要高上不少,如果p是均匀分布,那么采样命中率将是100%,当然如果采样是均匀分布,那么我直接取就好了,没必要多这么一步。

那么在此之上还有什么改进呢?

你自然能想到,我们不再用均匀分布U来计算样本是否可以保留,我们找一个好实现的概率分布Q,这个Q要和分布P相似,我们放缩该概率密度函数,使得min(q)>max(p)。

这样一来,命中率就又提高了,而且可以预想到,如果概率分布q=p那么采样命中率就会是100%,但这自然不可能。

那么有没有一种方法可以让采样的命中率是100%呢?

有,就是MCMC,在MCMC中,所有样本都是有效采样。而原理则是用频率取代概率。

2.MCMC

假设我们手里有个小球,每隔一秒就会变一种颜色(包括当前颜色),一段时间后,我们统计每种颜色的时间,就可以得到,各颜色出现的概率。

而这就是MCMC的原理,我们要做的是借助马尔可夫链,实现这样一个小球。

我们给小球输入一个指令,给定它每种颜色出现的概率,也就是P。

这时候小球内部有个状态机会来实现这个概率,首先会按照颜色的数量建立状态,同时每种状态之间会有线路连接,且每种状态之间都是相互可达的,即连通。

这时候有钢珠在每种状态里游走,钢珠到了哪种状态,哪种状态代表的灯就会亮起。

好了,如何让小球的灯能够以某种稳定的频率让灯亮起。

研究发现,只要让两两状态之间转换的概率与对方状态的概率乘积相等。

即P(A)Q(A->B)=P(B)Q(B->A),这就是马尔科夫链细致平衡条件,A和B代表任意两个状态。Q(A-B)是状态A到状态B的转移概率。

这时候,我们只要跟随钢珠在各状态之间的游走,记录下状态值即样本值,就能完成采样。

具体步骤如下,

(1)记录钢珠初始值状态X1。

(2)随机选择一个目标状态。

(3)查看抵达目标状态的转移概率。

(4)从U[0,1]中采一个值,如果值大于转移概率,那么状态不变,如果小于或等于转移概率,那么状态转化为目标状态。

重复如上步骤,就能得到一个服从P分布的样本了。

但这个算法虽然没有无效采样,但状态A转移到状态\bar{A}的转移概率过低,那么就会长时间卡在这一种状态。那么有没有方法改进呢。

当然有,那就是等比例缩放平衡方程两边的转移概率,P(A)Q(A->B)=P(B)Q(B->A)。

这里有个限制,那就是不能破坏转移概率小于或等于1概率特性,同时也不能破坏平衡方程本身。

那么我们能找到的一个缩放系数就是MAX[P(B->A),P(A->B)],两边同时除以该系数。

则有P(A)MIN[1,Q(A->B)/Q(B->A)] = P(B)MIN[1,Q(A->B)/Q(B->A)]

这样就能保证至少有一边可以必定转化为另一边。

到这里MCMC就算比较完整了。

问题就是Q怎么选。

这里有两种方案,一个就是Q任取,只要满足转移矩阵的要求,然后补一个系数配平方程

即: P(A)Q(A->B)*[P(B)Q(B->A)]=P(B)Q(B->A)*[P(A)Q(A->B)],

缩放后有:

P(A)Q(B->A)*MIN[1,P(B)Q(B->A)/P(B)Q(B->A)] = P(B)Q(B->A)*MIN[1,P(A)Q(A->B)/P(B)Q(B->A)]

另一种那就是选Q(A->B) = P(B),Q(B->A)=P(A)。

前者是HM的思想,配平的系数的使用方法类比前一节的转移接受率。

后者是Gibbs的思想。

具体实现有很多细节,可以看下面推荐的教学视频,这里推荐先看P6

 机器学习-白板推导系列-蒙特卡洛方法5(Monte Carlo Method)- 再回首_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/722735.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

媒体邀约服务主要有哪些工作

传媒如春雨,润物细无声,大家好,我是51媒体网胡老师。 媒体邀约服务是一项繁琐的沟通工作,下面介绍一下51媒体网的主要工作流程。‘ 明确需求:根据客户的传播需求,制定拟邀请媒体名单供客户筛选。 媒体筛选…

RNN循环神经网络及其梯度消失笔记

资料来源 【重温系列】RNN循环神经网络及其梯度消失 手把手公式推导大白话讲解 带时间序列的任务场景 标准神经网络建模的弊端 RNN循环神经网络 网络结构 多输入,多输出 这里的就是对应识别人名的任务,输入就是这里的x1,x2,输出的自然就是0或1了 这种…

针对有容量的电动汽车路由问题的灵活交叉的修正遗传算法

英文:Modified Genetic Algorithm with Flexible Crossover for The Capacitated Electric Vehicle Routing Problem 摘要 本文提出了一种对遗传算法的修改,用一种叫做灵活交叉操作的新技术来解决有容量的电动汽车路由问题(CEVRP&#xff0…

二百二十七、Linux——通过shell脚本判断HDFS文件是否存在,如果存在则删除HDFS文件

一、目的 在用脚本去实现对HDFS中过期的ODS层原始数据进行删除后,发现还需要在脚本中对HDFS文件是否存在进行判断,否则如果HDFS文件不存在那么任务执行就会报错 报错原因是这一天的HDFS文件并不存在 原有脚本 #! /bin/bash source /etc/profile nowda…

python爬虫之Appium 的使用

Appium 是一个跨平台移动端自动化测试工具,可以非常便捷地为 iOS 和 Android 平台创建自动化测试用例。它可以模拟 App 内部的各种操作,如点击、滑动、文本输入等,只要我们手工操作的动作 Appium 都可以完成。在前面我们了解过 Selenium&…

使用 Docker 设置 PySpark Notebook

使用 Docker 设置 PySpark Notebook 第 1 步:拉取 Docker 镜像 首先拉取jupyter/all-spark-notebook包含 Spark 3.5.0 的镜像。 docker pull jupyter/all-spark-notebook:spark-3.5.0 第 2 步:设置您的工作区 在运行 Docker 映像之前,我们…

开源大数据集群部署(十四)Ranger集成Hbase

作者:櫰木 在hd1.dtstack.com主机上执行 在hmaster和back master上进行安装和执行 解压ranger-2.3.0-hbase-plugin [roothd1.dtstack.com ranger-plugin]# cd /root/bigdata [roothd1.dtstack.com ranger-plugin]# tar -zvxf ranger-2.3.0-hbase-plugin -C /opt配…

Unity编辑器功能Inspector快捷自动填充数据和可视化调试

我们有时候可能需要在面板增加一些引用,可能添加脚本后要手动拖动,这样如果有大量的脚本拖动也是不小的工作量 实例 例如:我的脚本需要添加一个Bone的列表,一个个拖动很麻烦。 实现脚本 我们可以用这样的脚本来实现。 public…

小程序API能力集成指南——画布API汇总(一)

RJS Canvas Canvas Canvas 实例, 在 RJS 中可通过 getCanvasById 获取。 属性 number width:画布宽度 number height:画布高度 方法 如下。 1、getContext Canvas.getContext(string contextType) RenderingContext Canvas.getContext(string c…

利用 Redis 和 Lua 实现高效的限流功能

简介 在现代系统中,限流是一种重要的机制,用于控制服务端的流量并保护系统免受恶意攻击或请求泛滥的影响。本文将介绍如何利用 Redis 和 Lua 结合实现高效的限流功能。 一、什么是限流 限流指的是对系统中的请求进行控制和调节,确保系统在…

Cluade3干货:超越GPT,模型特点分析+使用教程|2024年3月更新

就在刚刚,Claude 发布了最新的大模型 Claude3,并且一次性发布了三个模型,分别是 Claude 3 Haiku:(日本俳句 )Claude 3 Sonnet(英文十四行诗)Claude 3 Opus(古典乐作品集…

docker-compose Install rustdesk

RustDesk RustDesk 是一款开源的远程支持和远程桌面工具,它旨在为用户提供便捷的远程协助和远程访问功能。 默认情况下,hbbs 监听21115(tcp), 21116(tcp/udp), 21118(tcp),hbbr 监听21117(tcp), 21119(tcp)。务必在防火墙开启这几个端口, 请注意21116同时要开启TCP和UDP。…

streamlit初学-用streamlit实现云台控制界面

用streamlit实现云台控制界面 效果图PC上的效果手机上的效果 源码: 本文演示了,如何用streamlit做一个云台控制界面。功能包括:用户登录,事件的处理,图片的更新 版本信息: streamlit_authenticator: 下载链接streamlit : 1.31.1python: 3.11 修改点: streamlit_authenticato…

AndroidStudio安装Android模拟器AVD及遇到的问题解决

打开DeiviceManager 创建虚拟机 选个常规的1080*1920分辨率 这里就遇到一个报错: Android SDK is up to date. Running Android Emulator hypervisor driver installer [SC] ControlService 失败 1062: 服务尚未启动。 [SC] DeleteService 成功 [SC] 由于发生错误…

在线部署ubuntu20.04服务器,安装jdk、mysql、redis、nginx、minio

查看服务器版本为20.04 lsb_release -a服务器初始账号密码 sxd / 123456 首先,更改自身密码都输入123456 sudo passwd 创建最高权限root账号,密码为 123456 su root 更新源列表 sudo apt-get update 安装 openssh-server和vim,途中输入y sudo ap…

Python爬虫:设置随机 User-Agent

Python爬虫:设置随机 User-Agent 在Python中编写爬虫时,为了模拟真实用户的行为并防止被服务器识别为爬虫,通常需要设置随机的User-Agent。你可以使用fake-useragent库来实现这一功能。首先,你需要安装fake-useragent库&#xff…

通过Apple Configurator 2导出iOS ipa包

通过Apple Configurator 2导出iOS ipa包 安装Apple Configurator 2 从Mac AppStore安装Apple Configurator 2 下载ipa 准备工作: 1、 电脑已经安装了Apple Configurator 2 2、 手机已经安装了目标软件 3、 Apple 账号已经下载过目标软件 打开后连接设备&#xf…

如何快速分析OB集群日志,敏捷诊断工具obdiag分析能力实践——《OceanBase诊断系列》之四

1. 前言 obdiag是OceanBase的敏捷诊断工具。1.2版本中,obdiag支持快速收集诊断信息,但仅有收集能力是不够的,还需要有分析能力。因此在obdiag的1.3.0版本中,我们加入了OB集群的日志分析功能。用户可以一键进行集群的OB日志的分析…

Redis核心数据结构之SDS(二)

SDS与C字符串的区别 杜绝缓冲区溢出 除了获取字符串长度的复杂度高之外&#xff0c;C字符串不记录自身长度带来的另一个问题是 容易造成缓冲区溢出(buffer overflow).例如<string.h>/strcat函数可以将src字符串 中的内容拼接到dest字符串的末尾: char *strcat(char *d…

c++中多种类型sort()排序的用法(数组、结构体、pair、vector)

c中多种类型sort排序的用法 一、对数组排序1、默认排序2、自定义排序 二、对结构体进行排序三、对pair进行排序1、默认排序2、自定义排序 四、对vector进行排序1、默认排序2、去重排序3、自定义排序 一、对数组排序 1、默认排序 默认从小到大进行排序 #include <bits/std…