数据结构与算法之贪心动态规划

        一:思考

        1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束 时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?电影的话 那肯定是最多加票价最高的,入场率。综合算法

        2.双十一马上就要来了,小C心目中的女神在购物车加了N个东西,突然她中了一个奖可以清空购物车5000元的东西(不能找零),每个东西只能买一件,那么她应该如何选择物品使之中奖的额度能最大利用呢?如果存在多种最优组合你只需要给出一种即可,嘿嘿 现在女神来问你,你该怎么办?(动态规划)

        二: 贪心算法

        概念:贪心算法又叫做贪婪算法,它在求解某个问题是,总是做出眼前最大利益。 也就是说只顾眼前不顾大局,所以它是局部最优解。核心点:通过局部最优推出全局最优

        举例:

        1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,现在给你这个N个会议的开始和结束时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?

         现在我们怎么去贪?也就这个我们选择的贪心策略:、

         1.1 选时间最短:1-3,2~4,3~5,4~6

        1.2 按结束时间从小到大排序:首先把第一个加入我们可以开会的列表。之后只要开始时间是大于我们上一个的结束时间的就可以开 (代码如下)

package tx;import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;/*** 贪心算法:1.某天早上公司领导找你解决一个问题,明天公司有N个同等级的会议需要使用同一个会议室,* 	现在给你这个N个会议的开始和结束时间,你怎么样安排才能使会议室最大利用?即安排最多场次的会议?** 	策略:按结束时间从小到大排序:首先把第一个加入我们可以开会的列表。之后只要开始时间是大于我们上一个的结束时间的就可以开* 	核心:排序*/
class Metting implements Comparable<Metting> {int meNum; // 编号int startTime; // 开始时间int endTime; // 结束时间public Metting(int meNum, int startTime, int endTime) {super();this.meNum = meNum;this.startTime = startTime;this.endTime = endTime;}public int compareTo(Metting o) {if (this.endTime > o.endTime)return 1;return -1;}@Overridepublic String toString() {return "Metting [meNum=" + meNum + ", startTime=" + startTime+ ", endTime=" + endTime + "]";}}public class MettingTest {public static void main(String[] args) {Scanner cin = new Scanner(System.in);List<Metting> mettings = new ArrayList<Metting>();int n = cin.nextInt();	//n个会议for (int i = 0 ;i < n; i++){int start = cin.nextInt();int end = cin.nextInt();Metting metting = new Metting(i+1, start, end);mettings.add(metting);}mettings.sort(null);int curTime = 0;		//当前的时间,从一天的0点开始,如果领导要求从8点开始 那curTime=8for(int i = 0 ; i < n; i ++){Metting metting = mettings.get(i);if(metting.startTime >= curTime){		//会议的开始时间比我们当前的要大 表示可以开System.out.println(metting.toString());curTime = metting.endTime;}}}
}

         2.1 贪心算法的核心思想

        贪心算法的套路:一定会有一个排序。哈夫曼编码,贪心算法,压缩算法。最短路径

        贪心算法不是对所有问题都能得到整体最优解,关键是贪心策略的选择,选择的贪心策略必须具备无后效性,即某个状态以前的过程不会影响以后的状态,只与当前状态有关。

         贪心算法其最重要的两个点就是: 贪心策略排序

通过局部最优解能够得到全局最优解

一般通过以下问题就可以通过贪心算法解决:

                1.针对某个问题有限制值,以及有一个期望的最好结果,通常是从某些数据中选出其中一些,达到最好的结果。

                2.一般会有一个排序,找出贡献最大的。

                3.举例看贪心是否可以解决。 一般用在任务调度,教师排课等系统。 实际上,用贪心算法解决问题的思路,并不总能给出最优解。

        三:动态规划

        经典问题

        背包问题 小偷去某商店盗窃,背有一个背包,容量是5kg,现在有以下物品(物品不能切分,且只有一个),请问小偷应该怎么拿才能得到最大的价值?

5kg的袋子

物品:

钱:6  10  12

Kg:1  2   4

思路:我们把5kg的袋子,拆分成1kg,1kg这样子计算,里面的表格就表示当前重量下能装的最多的钱。表格的数列就表示是要装的物品

1kg

2kg

3kg

4kg

5kg

加入物品1

6

6

6

6

6

加入物品2

6

10

10+6=16

10+6=16

16

加入物品3

6

10

16

16

18

第一个物品: 袋子只能装1kg的物品,所以价钱为6

第二个物品: 

        袋子当前为1kg 的容量时,我们发现物品2装不进去。那我们应该取多少呢?是不是只要取物品进来时1kg最大钱?

        当袋子为2kg时,我们发现物品2可以装下去,此时可以得到10块钱,之前物品1进来时2kg最大是6吧,那我们肯定要选择大的这个10,而不是6.此时袋子还剩0kg可以装。

        袋子为3kg时,我们还是可以装下这个物品2,得到10块,袋子还剩下1kg。

10+1kg能装的东西。

第三个物品:

        袋子为4kg时,物品3可以转进来,得到12块钱,袋子还剩0kg。

        我发现我不装物品3 还能得到16呢

        袋子为5kg时,物品3可以转进来,得到12块钱,袋子还剩1kg。那么装了物品3就能得到12+6=18块钱

        我发现我不装物品3 能得到16,比18小,所以决定装.。

                                (图解:将数值除以10就是上面的题)

                代码实现

package tx;public class Dp {public static void main(String[] args) {int value [] ={60,100,120};int weigth[] = {10,20,40};	//购物车那个问题 只需要一个价值就行了,重量都都没有。int w = 50;  //代表我可以装的数量int n = 3; //代表三个物品int dp[][] = new int[n+1][w+1];		//n表示是物品,w表示重量,初始化全是0for(int i = 1; i<= n; i++){	//每次加的物品for(int cw = 1 ; cw <= w ; cw ++){		//分割的背包if(weigth[i - 1] <= cw){		//表示这个物品可以装进去dp[i][cw] = Math.max(value[i-1] + dp[i-1][cw-weigth[i-1]],dp[i-1][cw]);}else{dp[i][cw] = dp[i-1][cw];	//不能装}}}System.out.println(dp[n][w]);}
}

四:动归和贪心的比较        

        贪心是只管眼前不会管后的情况,而动归不一样,它的每次递推都是基于上一次的最优解进行。所以往往动归是一定能求出最优解的,而贪心不一定,这也是贪心算法的缺点,但是大家都看到了动归的时间复杂度是O(n*m)而贪心是O(nlogn),所以贪心算法的是高效的,动归如果子问题太多的话 就容易算不出结果,而且能用动归的问题往往用贪心都能解决一部分,甚至很大一部分。因此如果在实际项目中要求不是特别严的话 我建议使用贪心算法求最优解,其实我们很多时候并不用保证100%的准确,能尽量准确就可以了,贪心恰恰是符合这个规则的。

        五:购物车代码实现

package tx;public class CardDp {public static void main(String[] args) {int weigth[] = {1,2,3,4,5,9};	//购物车那个问题 只需要一个价值就行了,重量都都没有。int w = 8;int n = 6;int dp[][] = new int[n+1][w+1];		//n表示是物品,w表示重量,初始化全是0for(int i = 1; i<= n; i++){	//每次加的物品for(int cw = 1 ; cw <= w ; cw ++){		//分割的背包if(weigth[i - 1] <= cw){		//表示这个物品可以装进去dp[i][cw] = Math.max(weigth[i-1] + dp[i-1][cw-weigth[i-1]],dp[i-1][cw]);}else{dp[i][cw] = dp[i-1][cw];	//不能装}}}System.out.println(dp[n][w]);}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/72166.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

高等数学教材重难点题型总结(四)不定积分

难点在于量级&#xff0c;不定积分一定要多练多见才能游刃有余~ 1.利用求导公式验证等式 2.计算不定积分

C语言——指针完全版

目录 一、指针的运算 1.1指针 - 整数 1.2指针 - 指针 二、指针遍历数组 2.1指针遍历数组 1.了解数组名称的含义&#xff08;&数组名和数组名的区别&#xff09;。 2.用指针遍历数组 三、指针数组、数组指针、函数指针 3.1指针数组 3.1.1指针数组的形式 3.1.2指针…

【自学笔记】如何在 Python 中使用 YAML 文件? 了解 YAML 格式和规范

文章目录 如何在 Python 中使用 YAML 文件YAML 的格式、规范和需要注意的点YAML 的缩进对象块其语法规范在 Python 中使用 PyYAML 模块安装 PyYAML 模块使用 PyYAML 模块读取和写入 YAML 文件读取 YAML 文件写入 YAML 文件load() 和 safe_load() 的区别总结如何在 Python 中使用…

day33 List接口

List实现类 java.util.ArrayList&#xff1a; 底层通过数组保存数据 &#xff0c; 查询快&#xff0c;增删慢 java.util.LinkedList&#xff1a; 底层通过链表保存数据&#xff0c; 查询慢&#xff0c;增删快 如果对操作性能没有特殊要求&#xff0c;我们一般选择ArrayList…

【力扣每日一题】2023.9.7 修车的最少时间

目录 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 代码&#xff1a; 题目&#xff1a; 示例&#xff1a; 分析&#xff1a; 题目给我们一个数值&#xff0c;数组里每个元素表示一个老师傅&#xff0c;老师傅修车花费的时间等于数值乘上车辆数的平方。 问我们修理…

vue中使用tailwindcss

Tailwind CSS with Vue tailwindcss官方文档 创建Vue项目 npm create vitelatest my-project -- --template vue cd my-project安装Tailwind CSS&#xff0c;创建tailwind.config.js和postcss.config.js npm install -D tailwindcss postcss autoprefixer npx tailwindcss …

编程语言排行榜

以下是2023年的编程语言排行榜&#xff08;按照流行度排序&#xff09;&#xff1a; Python&#xff1a;Python一直以来都是非常受欢迎的编程语言&#xff0c;它简洁、易读且功能强大。在数据科学、机器学习、人工智能等领域有广泛应用。 JavaScript&#xff1a;作为前端开发…

你不知道的JavaScript---对象

1.语法 对象可以通过两种方式定义&#xff1a;一种是对象字面量形式&#xff0c;一种是构造形式 对象字面量&#xff1a; var muObject {key: value }构造形式的&#xff1a; var myObject new Object() myObject.key value不管是使用对象字面量形式还是构造形式创建出来…

idea:java: Compilation failed: internal java compiler error

java: Compilation failed: internal java compiler error错误 检查下面2个即可&#xff1a;

docker 生成镜像的几个问题

docker 生成镜像的几个问题 根据jdk8.tar.gz 打包Jdk8 镜像失败运行镜像报错差不多是网络ip错误,在网上说重启docker即可解决运行mysql5.7.25 镜像失败向daemon.json文件添加内容导致docker重启失败docker run 命令常用参数根据jdk8.tar.gz 打包Jdk8 镜像失败 首选做准备工作…

卡牌类游戏推荐,卡牌类三国手游排行榜

以下是小编要推荐给大家的关于卡牌类三国手游排行榜的内容。这里有来自各个历史阶段的名将和美女&#xff0c;让你体验最真实的三国战役。你可以将各种战略思维运用到其中&#xff0c;感受步步为营的喜悦&#xff0c;最终赢得战火纷飞的三国&#xff0c;如果想了解每个游戏的具…

浅谈安科瑞ADL200仪表在爱尔兰工厂的应用

摘要&#xff1a;用户端消耗着整个电网80%的电能&#xff0c;用户端智能化用电管理对用户可靠、安全、节约用电有十分重要的意义。构建智能用电服务体系&#xff0c;推广用户端智能多功能仪表、智能用电管理终端等设备用电管理解决方案&#xff0c;实现电网与用户的双向良性互动…

失效的访问控制及漏洞复现

文章目录 渗透测试漏洞原理失效的访问控制1. 失效的访问控制1.1 OWASP TOP 101.1.1 A5:2017-Broken Access Control1.1.2 A01:2021-Broken Access Control 1.2 失效的访问控制类别1.2.1 水平越权1.2.2 垂直越权 1.3 攻防案例1.3.1 DVWA越权 1.4 相关漏洞1.4.1 目录遍历1.4.2 未…

【Redis】Bitmap 使用及应用场景

前言&#xff1a;bitmap 占用空间小&#xff0c;查询效率高&#xff0c;在一些场景中使用 bitmap 是一个很好的选择。 一、bitmap 相关命令 SETBIT - 设置指定位置的比特值&#xff0c;可以设为 1 或 0 例如 SETBIT key 10 1&#xff0c;将在 key 对应的 bitmap 中第10位设置为…

explain 实战-----查看hive sql执行计划

目录 1.join/left join/full join 语句会过滤关联字段 null 的值吗&#xff1f; &#xff08;1&#xff09;join &#xff08;2&#xff09; left join /full join 2.group by 分组语句会进行排序吗&#xff1f; 1.join/left join/full join 语句会过滤关联字段 null 的值吗…

【java】【SSM框架系列】【一】Spring

目录 一、简介 1.1 为什么学 1.2 学什么 1.3 怎么学 1.4 初识Spring 1.5 Spring发展史 1.6 Spring Framework系统架构图 1.7 Spring Framework学习线路 二、核心概念&#xff08;IoC/DI&#xff0c;IoC容器&#xff0c;Bean&#xff09; 2.1 概念 2.2 IoC入门案例 …

docker安装RabbitMQ教程

可以通过Docker来安装RabbitMQ&#xff0c;具体步骤如下&#xff1a; 安装Docker&#xff1a;请参考官方文档进行安装。 拉取RabbitMQ镜像&#xff1a;通过以下命令拉取最新版本的RabbitMQ镜像。 docker pull rabbitmq:latest运行RabbitMQ容器&#xff1a;通过以下命令运行Rab…

简单YUV数据转换

YUV是一种亮度信号Y和色度信号U、V是分离的色彩空间&#xff0c;它主要用于优化彩色视频信号的传输&#xff0c;使其向后相容老式黑白电视。其中“Y”表示明亮度&#xff08;Luminance或Luma&#xff09;&#xff0c;也就是灰阶值&#xff1b;而“U”和“V”表示的则是色度&…

vue3 defineExpose 显示的指定组件需要暴露的属性

简介&#xff1a; 是 vue3 新增的一个 api &#xff0c;用在 <script setup>中使用&#xff0c;用于显示的把组件的属性和方法暴露出来。可用于父子组件通信&#xff0c;子组件使用 defineExpose 将自身的方法或者属性暴露出去&#xff0c;父组件中通过 ref 获取子组件 D…

Android12.0首次开机默认授予app运行时权限(去掉运行时授权弹窗)第二种方法

1.概述 在12.0的系统产品开发中,在6.0以后对于权限的申请,都需要动态申请,所以会在系统首次启动后,在app的首次运行时,会弹出授权窗口,会让用户手动授予app运行时权限,在由于系统产品开发需要要求默认授予app运行时权限,不需要用户默认授予运行时弹窗,所以需要在首次开…