CMIP6数据处理方法与典型案例分析

气候变化对农业、生态系统、社会经济以及人类的生存与发展具有深远影响,是当前全球关注的核心议题之一。IPCC(Intergovernmental Panel on Climate Change,政府间气候变化专门委员会)的第六次评估报告明确;指出,自20世纪50年代以来,全球平均气温和海温的上升、广泛的积雪和冰川融化以及全球海平面的升高,无一不在证明气候变暖是无可争议的事实。为了对未来气候进行评估,科学家通常使用全球气候模型进行预测。

全球气候模型(Global Climate Model, GCM),亦称全球环流模型或全球大气模型,是一种数值模型,被广泛用于模拟地球的气候系统。GCM利用一系列的数学公式来描绘气候系统的各个主要组成部分,包括大气、海洋、冻土以及地表和海洋表面的生物地理过程。GCM的空间和时间精度可以根据需要进行调整。这些模型为我们提供了理解气候系统运行机制的途径,为预测气候变化趋势、评估气候变化对人类社会和生态系统的影响以及制定应对气候变化的策略提供了关键工具。

  为了进一步理解气候变化,世界气候研究计划(World Climate Research Programme, WCRP)发起了气候模型比较计划(Climate Model Intercomparison Project,CMIP)。CMIP的主要目标是收集和比较各种全球气候模型的模拟结果,以理解和预测过去、现在和未来的气候变化。

  CMIP6数据被广泛应用于全球和地区的气候变化研究、极端天气和气候事件研究、气候变化影响和风险评估、气候变化的不确定性研究、气候反馈和敏感性研究以及气候政策和决策支持等多个领域。这些数据为我们理解和预测气候变化,评估气候变化的影响和风险,以及制定有效的气候政策和决策提供了关键的信息和工具。

专题一、CMIP6中的模式比较计划

1.1 GCM介绍

全球气候模型(Global Climate Model, GCM),也被称为全球环流模型或全球大气模型,是一种用于模拟地球的气候系统的数值模型。这种模型使用一系列的数学公式来描述气候系统的主要组成部分,包括大气、海洋、冰冻土壤以及地表和海洋表面的生物地理过程。GCM在空间和时间上的精度可以根据需求进行调整,通常的分辨率可以从几百公里到几公里,时间步长可以从几分钟到几小时

1.2 CMIP介绍

CMIP,全称为气候模型比较计划(Climate Model Intercomparison Project),是由世界气候研究计划(World Climate Research Programme,WCRP)发起的一个国际合作项目。其目的是通过收集和比较各种全球气候模型(GCMs)的模拟结果,以理解过去的、现在的和未来的气候变化。

 

1.3相关比较计划介绍

 

 

专题二、数据下载

2.1方法一:手动人工

利用官方网站

2.2方法二:自动

利用Python的命令行工具

 

2.3方法三:半自动购物车

利用官方网站

2.4 裁剪netCDF文件

基于QGIS和CDO实现对netCDF格式裁剪

 

QGIS中的操作

 

裁剪效果

2.5 处理日期非365天的GCM

以BCC为例处理

专题三、基础知识

3.1 Python基础

Python 是一种高级的、解释型的编程语言,其语法简洁明了,适合快速开发。在大气科学中,Python 以其丰富的科学计算和数据分析库备受青睐。这些库如 Numpy,Scipy,Pandas 和 Xarray 等,为处理大气科学数据提供了强大的支持。

Numpy:Numpy 是 Python 中用于科学计算的核心库,提供了高性能的多维数组对象及相关工具。对于大气科学数据的处理,例如温度、压力、风速等通常都会使用到多维数组。Numpy 提供了丰富的函数库来处理这些数组,包括数学运算、逻辑运算、形状操作、排序、选择等操作。

Scipy:Scipy 是基于 Python 的开源软件,用于科学计算中的数值积分和微分方程数值求解,线性代数,优化,信号处理等。在大气科学中,例如对气温、气压等数据进行傅立叶分析,求解大气动力学中的偏微分方程等,都可以使用 Scipy 来实现。

Pandas:Pandas 是基于 Numpy 构建的,使数据清洗和分析工作变得更快更简单。Pandas 是专门为处理表格和混杂数据设计的,而 Numpy 更适合处理统一的数值数组数据。在大气科学中,例如对气象站的观测数据进行时间序列分析,处理混合类型的气象数据,以及对数据进行清洗、筛选和统计等操作,Pandas 都是非常有用的工具。

3.2 CDO基本操作

CDO(Climate Data Operator)是大气科学领域常用的一款气候和气象数据处理工具。它是一个功能强大的命令行工具,可以处理和分析格网和无格网数据,支持多种数据格式,包括netCDF、GRIB、SERVICE, EXTRA和IEG。

CDO提供了一套丰富的函数库,可以用来进行各种常见的数据操作,包括

基础操作:如选择、提取和修改变量、维度、属性等。

数值操作:如四则运算、统计运算、函数运算等。例如,可以计算数据的平均值、最大值、最小值、标准差等。

空间操作:如重新格网、插值、汇总、选择和提取地理区域等。

时间操作:如选择和提取时间周期、计算时间平均或累积等。

3.3 Xarray的基本操作

Xarray 是一个用于处理多维数组数据的 Python 库,它在 numpy 的基础上提供了一系列用于数据操作和分析的高级接口,并能很好地支持 netCDF 这类基于网络的自描述数据格式,因此在大气科学和气候科学中被广泛使用。

Xarray 的主要特点包括:

基于标签的数据操作:Xarray 使用维度名称而不是轴编号进行数据选择和操作,极大地增强了代码的可读性和可维护性。

自动对齐数据:在进行运算时,Xarray 可以自动对齐不同数据集的变量(variables)和坐标(coordinates)。

分组运算和数据透视:Xarray 支持类似于 pandas 的分组运算(group-by)和数据透视(pivot)功能。

I/O操作:Xarray 对多种数据格式提供了非常好的支持,尤其是对 netCDF 数据的读取和写入。

​专题四、单点降尺度

4.1 Delta方法

Delta方法(Delta Change Method),也称为增量方法或差值方法,是气候模型降尺度的一种简单而常用的方法。该方法假设气候变化的幅度在未来相对于历史期间将保持恒定。因此,对于某一具体的未来时段,可以通过计算过去和现在气候的差值(即 delta),并将其应用到未来的气候预测上,来预估未来的气候状态。该方法可以应用于温度和降水等气候变量的预测。

4.2统计订正

概率分布函数(Probability Density Function, PDF)的订正。这种方法的基本思想是:通过修改大尺度模型输出的PDF,使其更符合观测数据的PDF,从而获得更准确的小尺度气候变量。

4.3机器学习方法

降尺度是将粗尺度的全球气候模型(GCM)输出数据转换为地面更精细尺度的过程。机器学习方法因其在处理复杂模式识别和高维数据问题的强大能力,已经被成功应用于降尺度技术。在气候学领域,机器学习已被成功用于将粗尺度的气候模型输出(例如,温度和降水)与其他环境变量(例如,地形和土壤类型)关联,以获得更高分辨率的气候预测。

 

实现步骤

建立特征

建立模型

模型评估

4.4多算法集成方法

多算法的集成

贝叶斯模型平均 (Bayesian Model Averaging, BMA)

贝叶斯模型平均是一种统计方法,用于根据观察数据确定各种模型的后验概率。与选择一个最好的模型相反,贝叶斯模型平均考虑了所有可能的模型,然后根据每个模型的后验概率进行加权平均。

Python+pymc3实现

专题五、统计方法的区域降尺度

5.1 Delta方法

5.2 基于概率订正方法的

专题六、基于WRF模式的动力降尺度

动态降尺度通常使用更高分辨率的区域气候模型(RCM),这些模型在更大尺度的全球气候模型驱动下运行。其中,WRF(Weather Research and Forecasting)模型是目前使用最广泛的区域气候模型之一。

WRF模型是一个灵活的、大气环流模型,适合用于各种尺度的气候和气象研究。它的主要特点是具有高分辨率(可达到几公里),并且可以考虑到许多重要的地球物理过程,如云的形成、降水、陆面过程、海洋过程、边界层过程、辐射、化学过程等。

6.1制备CMIP6的WRF驱动数据

利用cdo工具对gcm的输出文件进行重新编码制备wrf的驱动数据

6.1.1针对压力坐标系的数据制备

6.1.2针对sigma坐标系GCM数据制备

6.1.3 WPS处理

6.2 WRF模式运行

 

6.3 模式的后处理

提取变量

变量的统计

变量的可视化

专题七、典型应用案例-气候变化1

7.1针对风速进行降尺度

 

7.2针对短波辐射降尺度

专题八、典型应用案例-气候变化2

ECA极端气候指数计算

ECA (European Climate Assessment) 是欧洲的一个气候评估项目,其在全球范围内发布了一系列的极端气候事件指数。这些指数被广泛用于气候变化研究,特别是在研究极端天气和气候事件方面。

ECA 的极端气候指数主要包括以下几类:

温度指数:这些指数主要用于度量温度的极端情况,例如热日数(TX90p,年中最高气温超过90百分位数的天数)、冷日数(TN10p,年中最低气温低于10百分位数的天数)、热夜数(TN90p,年中最低气温超过90百分位数的天数)、冷夜数(TN10p,年中最低气温低于10百分位数的天数)等。

降水指数:这些指数主要用于度量降水的极端情况,例如最大连续5日降水量(RX5day)、大于或等于10mm的降水日数(R10mm)、大于或等于20mm的降水日数(R20mm)、降水强度(SDII)等。

这些指数对于理解和预测极端气候事件的影响非常重要,因为极端气候事件(如热浪、干旱、洪水等)往往比平均气候变化带来更大的影响。因此,对这些指数的研究有助于我们更好地理解和适应气候变化。

Consecutive dry days index

Consecutive frost days index per time period

Consecutive summer days index per time period

Consecutive wet days index per time period

专题九、典型应用案例-生态领域

预估生长季开始和结束时间

1、建立气象数据与VIPPHEN遥感物候数据中生长季开始和结束

2、在未来气候情景下预估生长季长季开始、结束和长度

专题十、典型应用案例-水文、生态模式数据

 SWAT数据制备

Biome-BGC数据

Biome-BGC是利用站点描述数据、气象数据和植被生理生态参数,模拟日尺度碳、水和氮通量的模型,其研究的空间尺度可以从点尺度扩展到陆地生态系统。案例中以单点模拟方式制备CMIP6的气象数据。

原文链接:

https://mp.weixin.qq.com/s?__biz=MzUyNzczMTI4Mg==&mid=2247680995&idx=6&sn=10921c3f05b2f8991468a6b60dafe987&chksm=fa775cdecd00d5c84b40ff63148d65e1351a33cd4f720de239045a789626c1e3a3ab48d68c4e&token=1722172577&lang=zh_CN#rd

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/721496.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【笔记】【电子科大 离散数学】 3.谓词逻辑

谓词引入 因为含变量的语句(例如x > 3)不是命题,无法进行逻辑推理。 为了研究简单命题句子内部的逻辑关系,我们需要对简单命题进行分解,利用个体词,谓词和量词来描述它们,并研究个体与总体…

JavaScript实现鼠标移动特效

关键代码&#xff1a; <script>document.onmousemove function (e) {// 加div节点var div document.createElement(div);div.style.width 5px;div.style.height 5px;// 加img节点var img document.createElement(img);// 将Img追加到div里面。div.appendChild(img);…

Python开发工具:pycharm使用注意事项以及设置

上一篇文章写了pycharm的安装以及运行&#xff0c;但是在安装过程中遇到了一些问题&#xff0c;接下来详细解析安装过程中遇到的问题&#xff0c;注意事项以及设置配置依赖等信息 安装遇到的问题&#xff1a; 协议许可证关闭不了&#xff1a;PyCharm安装完成后&#xff0c;打…

数据传输的同步技术包含哪些?如何高效安全传输数据?

在数字化时代&#xff0c;数据传输的同步技术对于确保信息的一致性和通信质量至关重要。本文将探讨数据传输同步技术的种类、如何实现高效安全的数据传输&#xff0c;以及企业在数据迁移中常用的几种方式。最后&#xff0c;我们将重点介绍镭速大数据迁移工具的优势。 数据传输同…

Python成功解决AttributeError: ‘Series‘ object has no attribute ‘set_value‘

Python成功解决AttributeError: ‘Series‘ object has no attribute ‘set_value‘ &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&am…

简单介绍AudioLM

主要介绍AudioLM&#xff0c;学习资料为知乎文章。这里只介绍核心思想和模块。 AudioLM 基本信息 AudioLM: a Language Modeling Approach to Audio Generation pdf: https://arxiv.org/pdf/2209.03143.pdf 参考资料&#xff1a;https://zhuanlan.zhihu.com/p/637196330 模…

Elasticsearch:向量相似度计算 - 可笑的速度

作者&#xff1a;Chris Hegarty 任何向量数据库的核心都是距离函数&#xff0c;它确定两个向量的接近程度。 这些距离函数在索引和搜索期间执行多次。 当合并段或在图表中导航最近邻居时&#xff0c;大部分执行时间都花在比较向量的相似性上。 对这些距离函数进行微观优化是值…

记录一次bug

Component inside renders non-element root node that cannot be animated. 这可能导致 页面切换过度动画失败&#xff0c;导致页面空白&#xff0c;需要有一个公共根组件 放在一个根元素下面即可

STM32利用标准库编写PA0和PA4中断proteus仿真

首先先看看结果吧&#xff1a;昨天学习的是5--9或10--15引脚的中断&#xff0c;如果选择的是0到4口应该怎么办呢&#xff1f;今天就学习的这个&#xff0c;特此记录一下&#xff1a; 整个工程打包好了&#xff0c;直接下载打开就能仿真了&#xff1a; 链接&#xff1a;https:/…

「Mybatis实战九」:Mybatis的dao层开发使用 - 代理开发方式

一、前言 ​ 本文将进一步探讨在之前“「Mybatis实战八」&#xff1a;传统开发方式下的Mybatis DAO层构建”所奠定的基础之上&#xff0c;如何运用Mybatis的接口代理开发模式来优化持久层的设计与实现&#xff0c;解决上文中的问题。 二、代理开发方式简介 Mybatis提供的基于…

前端部署真的不简单

公众号&#xff1a;程序员白特&#xff0c;欢迎一起交流学习~> 原文&#xff1a;前端部署真的不简单 - 掘金 (juejin.cn) 现在大部分的中小型公司部署前端代码都是比较简单的&#xff0c;主要步骤如下: 首先&#xff0c;通过脚手架提供的命令npm run build打包前端代码&…

【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO

【模型复现】自制数据集上复现目标检测域自适应 SSDA-YOLO 1. 环境安装2. 数据集制作2.1 数据准备2.2 数据结构 3. 模型训练3.1 数据文件配置3.2 训练超参数配置3.3 模型训练 4. 模型验证4.1 验证超参数配置4.2 模型验证 5. 模型推理5.1 推理超参数配置5.2 模型推理 6. 踩坑记录…

【主题广范|见刊快】2024年可再生能源与智能电网国际学术会议(ICRESG 2024)

【主题广范|见刊快】2024年可再生能源与智能电网国际学术会议(ICRESG 2024) 2024 International Conference Renewable Energy and Smart Grid 本次会议汇聚了来自全球各地的专家学者&#xff0c;共同探讨可再生能源与智能电网领域的最新研究成果、技术进展和未来发展趋势。会…

数据结构.多项式加法

#include<iostream> using namespace std; int a[100][2], b[100][2], sum[100][2]; int n, m; int main() {cin >> n;//输入第一个多项式的项数for (int i 0; i < n; i){cin >> a[i][0] >> a[i][1];//分别输入系数和指数}cin >> m;//输入第…

递归学习资料

思路 例题 package 递归;public class 反向打印字符串 {public static void main(String[] args) {f("ABC",0);}static void f(String str,int n){if (nstr.length()){return;}f(str,n1);System.out.println(str.charAt(n)"");} }多路递归 递归优化 -剪枝…

建立网络防御时需要重点考虑的10个因素

互联网安全中心&#xff08;CIS&#xff09;建议企业可以从以下10个因素入手&#xff1a;资产管理、数据管理、安全配置、账户和访问控制管理、漏洞管理、日志管理、恶意软件防御、数据恢复、安全培训和事件响应。 1、资产管理 建立网络防御的第一步是制定企业资产和软件资产的…

【场景题】如何设计一个购物车功能?

本文参考文章&#xff1a;https://www.hollischuang.com/archives/6998 https://www.woshipm.com/pd/4115447.html https://zq99299.github.io/note-book/back-end-storage/01/03.html 首先我们要明白&#xff1a;购物车系统在电商系统中的角色是作为用户选购商品和最终下单的桥…

AI Icon Generator:免费的AI图标生成器,一键生成你想要的图标(附试用链接)

给大家推荐一个免费的AI图标生成器&#xff0c;只需要输入你想要生成的图标内容就可以一键生成图标&#xff0c;可以选择不同风格&#xff0c;完全免费&#xff0c;比如输入“一只在宇宙飞船上的猪&#xff01;”看看他能生成什么样的效果。 感兴趣的小伙伴快去试试吧&#xff…

C语言-两数组元素互换

#include <stdio.h> #include <string.h>//两数组元素互换 void swap(int ch1[],int ch2[],int sz) {int i 0;char ch 0;for(i 0;i < sz;i){ch ch1[i];ch1[i] ch2[i];ch2[i] ch;} } //打印数组元素 void print(int ch[],int sz) {int i 0;for(i 0;i <…

uniapp iOS 真机调试

一、下载爱思助手 二、打开爱思助手&#xff0c;把你的 苹果手机 用原装数据线连接至电脑&#xff1a; 找到 工具箱 > 搜索IPA > 打开IAP签名 三、添加 IPA 文件 mac&#xff1a;finder 》应用程序 》右键 HbuilderX 》显示包内容 》HbuilderX / plugins/ lau…