splay学习笔记重制版

以前写的学习笔记:传送门
但是之前写的比较杂乱,这里重制一下

问题背景

假设我们要维护一个数据结构,支持插入、删除、查询某个值的排名,查询第 k k k大的值等操作。
最直接的想法是用二叉搜索树,也就是左子树权值<根节点权值<右子树权值的数据结构。查询时,如果目标值小于根节点就往左走,否则往右走。
但是二叉搜索树的深度是没法保证的,树高可以达到 O ( n ) O(n) O(n)级别,这样我们的操作都是 O ( n ) O(n) O(n)的。
因此这里我们需要使用平衡树,通过一些操作来维持树的平衡,让单次操作变成 O ( log ⁡ n ) O(\log n) O(logn)的复杂度。

旋转操作

我们看下面这棵二叉搜索树,它的权值满足:X<B<Y<A<C。
在这里插入图片描述
假设我们想要把B节点旋转到根节点,我们先把B往上提起来:
在这里插入图片描述
然后为了维持二叉搜索树的性质,根据X<B<Y<A<C的权值关系,我们把Y连到A上:
在这里插入图片描述
上面演示的是右旋(zig)操作,左旋(zag)类似,对A节点左旋就得到原来的树。
(具体实现的时候不用纠结是左旋还是右旋,可以通过同一个rotate函数旋转,见实现细节部分)
这样我们就把B节点往上旋转了一次,使它的深度减少了1。
我们不断旋转目标节点,直到旋转到根的这一过程,称为伸展(splay)。

双旋操作

在把一个节点一直转到根(即splay操作)的过程中,如果我们只是一直旋转同一个节点(即单旋),我们发现这样没法保证树高维持在平均 O ( log ⁡ n ) O(\log n) O(logn)
在这里插入图片描述
我们需要进行双旋操作。假设需要旋转的节点是X,X的父节点为P。假如P是根节点,那只需要旋转X就可以了,比较简单。主要讨论P不是根节点的两种情况:
1.X与P所在分支反向(即X和P一个是左孩子,一个是右孩子)
这种情况我们旋转X两次就可以了。由于X和P所在分支方向相反,所以这两次旋转一次是左旋,一次是右旋。

在这里插入图片描述
2.X与P所在分支同向(即X和P同为左孩子或右孩子)
如果这里还是旋转X两次,就会导致上面提到的问题,我们的树高没法控制。
所以这种情况我们要先旋转P,再旋转X。
在这里插入图片描述
总结:同向先转父节点,反向转两次自己。

时间复杂度分析

这部分可以全部跳过,只需要知道均摊复杂度为 O ( log ⁡ n ) O(\log n) O(logn)即可。

均摊时间复杂度介绍

均摊时间复杂度,其实就是每一次操作平均下来的复杂度。在多次操作中,一些操作用时比较长,另一些操作用时比较短,我们需要计算所有复杂度加起来除以操作数得到的结果。
在splay树中,我们把“将任意一个节点旋转到根节点”称为一次操作。
单次操作的复杂度最高为 O ( n ) O(n) O(n),但是总的均摊复杂度为 O ( log ⁡ n ) O(\log n) O(logn)

均摊时间复杂度计算

这个在以前写的学习笔记的最后部分有介绍,但是写得很乱。我们这里介绍势能分析方法。
假设我们有 m m m个操作,开销分别为 c 1 , c 2 , . . . , c m c_1,c_2,...,c_m c1,c2,...,cm。那么这 m m m次操作的总复杂度为 ∑ i = 1 m c i \sum\limits_{i=1}^{m}c_i i=1mci,单次操作的复杂度为 ∑ i = 1 m c i m \frac{\sum\limits_{i=1}^mc_i}{m} mi=1mci
通常 ∑ i = 1 m c i \sum\limits_{i=1}^mc_i i=1mci是不太好算的,因此我们可以引入一个势能函数 Φ \Phi Φ(这个势能函数是我们根据具体问题设计的,不是一个固定的函数), Φ ( D i ) \Phi(D_i) Φ(Di)表示第 i i i次操作之后数据结构的“势能”。
定义 t i = c i + Φ ( D i ) − Φ ( D i − 1 ) t_i=c_i+\Phi(D_i)-\Phi(D_{i-1}) ti=ci+Φ(Di)Φ(Di1),表示一种操作的开销与引起的势能变化之和。
那么 ∑ i = 1 m t i = ∑ i = 1 m ( c i + Φ ( D i ) − Φ ( D i − 1 ) ) = ∑ i = 1 m c i + Φ ( D m ) − Φ ( D 0 ) \sum\limits_{i=1}^mt_i=\sum\limits_{i=1}^m(c_i+\Phi(D_i)-\Phi(D_{i-1}))=\sum\limits_{i=1}^mc_i+\Phi(D_m)-\Phi(D_0) i=1mti=i=1m(ci+Φ(Di)Φ(Di1))=i=1mci+Φ(Dm)Φ(D0)
只要我们合理地设计这个 Φ \Phi Φ,使得 ∑ i = 1 m t i \sum\limits_{i=1}^mt_i i=1mti能算出来,而且 Φ ( D m ) ≥ Φ ( D 0 ) \Phi(D_m)\ge\Phi(D_0) Φ(Dm)Φ(D0),我们就可以得到 ∑ i = 1 m c i ≤ ∑ i = 1 m t i \sum\limits_{i=1}^mc_i\le\sum\limits_{i=1}^mt_i i=1mcii=1mti,并把 ∑ i = 1 m t i m \frac{\sum\limits_{i=1}^mt_i}{m} mi=1mti当作实际上的单次时间复杂度(即均摊复杂度,amortized cost)。

splay均摊复杂度分析

下面分析过程中, log ⁡ \log log的底数都为2(e.g. log ⁡ 1024 = 10 \log 1024 = 10 log1024=10)。
我们定义splay树中某个节点 x x x的子树大小为 S ( x ) S(x) S(x),势能 R ( x ) = log ⁡ S ( x ) R(x)=\log S(x) R(x)=logS(x)。(S代表size,R代表rank)
整棵树的势能 Φ ( T ) = ∑ i ∈ T R ( i ) = ∑ i ∈ T log ⁡ S ( i ) \Phi(T)=\sum\limits_{i\in T}R(i)=\sum\limits_{i\in T}\log S(i) Φ(T)=iTR(i)=iTlogS(i)

在将某个节点X splay到根节点的过程中,总共有3种情况:(设X的父亲为P)
1.P为根节点,则旋转X。
2.X和P同向,先旋转P,再旋转X。
3.X和P反向,旋转两次X。
其中第一种情况最多发生一次,因为发生之后X就到根节点了。
设第 i i i次旋转的均摊复杂度为 t i t_i ti,则一次splay操作的复杂度为 ∑ t i \sum t_i ti
我们希望证明后两种情况旋转一次的 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) t_i\le3(R_2(X)-R_1(X)) ti3(R2(X)R1(X)),第一种 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) + 1 t_i\le 3(R_2(X)-R_1(X))+1 ti3(R2(X)R1(X))+1

第一种情况:P为根节点,旋转X。
在这里插入图片描述
这种情况, c i = 1 c_i=1 ci=1,只有X和P节点的势能发生了变化(其它节点的子树大小不变)
那么 t i = c i + Φ ( T 2 ) − Φ ( T 1 ) = 1 + R 2 ( X ) − R 1 ( X ) + R 2 ( P ) − R 1 ( P ) t_i=c_i+\Phi(T_2)-\Phi(T_1)=1+R_2(X)-R_1(X)+R_2(P)-R_1(P) ti=ci+Φ(T2)Φ(T1)=1+R2(X)R1(X)+R2(P)R1(P)
由于 R 2 ( P ) < R 1 ( P ) R_2(P)<R_1(P) R2(P)<R1(P),所以 t i < 1 + R 2 ( X ) − R 1 ( X ) ≤ 1 + 3 ( R 2 ( X ) − R 1 ( X ) ) t_i<1+R_2(X)-R_1(X)\le 1+3(R_2(X)-R_1(X)) ti<1+R2(X)R1(X)1+3(R2(X)R1(X))

第二种情况:X和P同向,先旋转P,再旋转X。
在这里插入图片描述
这里旋转了两次,所以 c i = 2 c_i=2 ci=2。另外,X,P,G节点的势能发生了变化。
t i = 2 + Φ ( T 2 ) − Φ ( T 1 ) = 2 + R 2 ( X ) − R 1 ( X ) + R 2 ( P ) − R 1 ( P ) + R 2 ( G ) − R 1 ( G ) t_i=2+\Phi(T_2)-\Phi(T_1)=2+R_2(X)-R_1(X)+R_2(P)-R_1(P)+R_2(G)-R_1(G) ti=2+Φ(T2)Φ(T1)=2+R2(X)R1(X)+R2(P)R1(P)+R2(G)R1(G)
这里 R 2 ( X ) = R 1 ( G ) R_2(X)=R_1(G) R2(X)=R1(G),所以 t i = 2 + R 2 ( P ) + R 2 ( G ) − R 1 ( X ) − R 1 ( P ) t_i=2+R_2(P)+R_2(G)-R_1(X)-R_1(P) ti=2+R2(P)+R2(G)R1(X)R1(P)
注意到(注意不到怎么办?):
2 R 2 ( X ) − R 2 ( G ) − R 1 ( X ) = log ⁡ S 2 ( X ) 2 S 2 ( G ) S 1 ( X ) = log ⁡ ( S 2 ( G ) + S 1 ( X ) + 1 ) 2 S 2 ( G ) S 1 ( X ) 2R_2(X)-R_2(G)-R_1(X)=\log \frac{S_2(X)^2}{S_2(G)S_1(X)}=\log\frac{(S_2(G)+S_1(X)+1)^2}{S_2(G)S_1(X)} 2R2(X)R2(G)R1(X)=logS2(G)S1(X)S2(X)2=logS2(G)S1(X)(S2(G)+S1(X)+1)2
a = S 2 ( G ) , b = S 1 ( X ) a=S_2(G),b=S_1(X) a=S2(G),b=S1(X),则 2 R 2 ( X ) − R 2 ( G ) − R 1 ( X ) = log ⁡ ( a + b + 1 ) 2 a b ≥ log ⁡ ( a + b ) 2 a b ≥ log ⁡ 4 = 2 2R_2(X)-R_2(G)-R_1(X)=\log\frac{(a+b+1)^2}{ab}\ge\log\frac{(a+b)^2}{ab}\ge\log 4=2 2R2(X)R2(G)R1(X)=logab(a+b+1)2logab(a+b)2log4=2
因此: t i ≤ ( 2 R 2 ( X ) − R 2 ( G ) − R 1 ( X ) ) + R 2 ( P ) + R 2 ( G ) − R 1 ( X ) − R 1 ( P ) t_i\le (2R_2(X)-R_2(G)-R_1(X))+R_2(P)+R_2(G)-R_1(X)-R_1(P) ti(2R2(X)R2(G)R1(X))+R2(P)+R2(G)R1(X)R1(P)
= 2 R 2 ( X ) − 2 R 1 ( X ) + R 2 ( P ) − R 1 ( P ) =2R_2(X)-2R_1(X)+R_2(P)-R_1(P) =2R2(X)2R1(X)+R2(P)R1(P)
又由于 R 2 ( P ) ≤ R 2 ( X ) , R 1 ( P ) ≥ R 1 ( X ) R_2(P)\le R_2(X),R_1(P)\ge R_1(X) R2(P)R2(X),R1(P)R1(X)
所以 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) t_i\le 3(R_2(X)-R_1(X)) ti3(R2(X)R1(X))

第三种情况:X和P反向,旋转两次X。
在这里插入图片描述
类似地,可以得到 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) t_i\le 3(R_2(X)-R_1(X)) ti3(R2(X)R1(X))

上面我们证明了后两种旋转的 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) t_i\le3(R_2(X)-R_1(X)) ti3(R2(X)R1(X)),第一种 t i ≤ 3 ( R 2 ( X ) − R 1 ( X ) ) + 1 t_i\le 3(R_2(X)-R_1(X))+1 ti3(R2(X)R1(X))+1
由于第一种情况有且仅有一次,所以我们把所有旋转的 t i t_i ti加起来,消去中间项,得到 ∑ t i = 3 ( R ( X ′ ) − R ( X ) ) + 1 \sum t_i=3(R(X')-R(X))+1 ti=3(R(X)R(X))+1
因为 ∑ t i \sum t_i ti就表示把一个节点splay到根的均摊复杂度,所以均摊复杂度即为 O ( log ⁡ n ) O(\log n) O(logn)
对于 m m m次splay操作,总复杂度为 m ∗ O ( log ⁡ n ) + Φ ( T m ) − Φ ( T 0 ) m*O(\log n)+\Phi(T_m)-\Phi(T_0) mO(logn)+Φ(Tm)Φ(T0)。树在成为一条链时势能取到最大值 n log ⁡ n n\log n nlogn,所以 m m m次splay的总复杂度为 O ( ( m + n ) log ⁡ n ) O((m+n)\log n) O((m+n)logn)。其中 n n n为节点数。

splay树的操作

不管以什么顺序选节点,我们一个个把它们splay到根,最后每次的均摊复杂度为 O ( log ⁡ n ) O(\log n) O(logn)
因此,无论是插入、删除、查询还是其他操作,我们按二叉查找树的操作进行,然后把目标节点splay到根。
由于插入、删除、查询等操作和splay操作访问的都是一样的节点,所以它们的时间复杂度和splay操作是同一个级别的,都是 O ( log ⁡ n ) O(\log n) O(logn)

实现细节

//splay树定义
struct node {int father;int val;int ch[2];		//左右孩子
} w[Size];
int chk(int x) {		//chk(x)=0表示x为左孩子,=1表示x为右孩子return w[w[x].father].ch[1]==x;
}
void connect(int x,int fa,int k) {w[x].father=fa;w[fa].ch[k]=x;
}
void rotate(int x) {	//把x往上旋转一次int y=w[x].father;int z=w[y].father;int yson=chk(x),zson=chk(y);connect(w[x].ch[yson^1],y,yson);connect(y,x,yson^1);connect(x,z,zson);
}
void splay(int x,int goal) {	//把节点x旋转到goal的孩子的位置,goal=0表示旋转到根 int fa;while((fa=w[x].father)!=goal) {if(w[fa].father!=goal) {if(chk(x)==chk(fa)) {rotate(fa);} else {rotate(x);}}rotate(x);}if(!goal)	root=x;
}

咕咕

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/721314.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java实现手机库存管理

一、实验任务 编写一个程序&#xff0c;模拟库存管理系统。该系统主要包括系统首页、商品入库、商品显示和删除商品功能。每个功能的具体要求如下&#xff1a; 1.系统的首页&#xff1a;用于显示系统所有的操作&#xff0c;并且可以选择使用某一个功能。 2.商品入库功能&…

《JAVA与模式》之访问者模式

系列文章目录 文章目录 系列文章目录前言一、分派的概念二、分派的类型三、访问者模式的结构四、访问者模式的优点五、访问者模式的缺点 前言 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点击跳转到网…

ACWing: 730.机器人跳跃问题

二分、递推 #include <iostream> #include <cstring> #include <algorithm> using namespace std;const int N 1e5 10; int h[N] {0};int n,maxh0; // 当 E > maxh 时一定可以满足bool check(int mid){int E mid;for(int i 1;i < n;i){E 2 *…

电商直播大屏是什么?想搞这个怎么做?

随着电商行业的快速发展&#xff0c;直播带货已成为当下最热门的市场营销方式之一。为了更好地掌握直播数据&#xff0c;为企业决策提供有力支持&#xff0c;电商直播数据大屏应运而生。 一、电商直播数据大屏概述 电商直播数据大屏是一种集成了多种数据源的大屏幕可视化展示…

【管理咨询宝藏资料33】某头部咨询公司组织效能提升模型方案

本报告首发于公号“管理咨询宝藏”&#xff0c;如需阅读完整版报告内容&#xff0c;请查阅公号“管理咨询宝藏”。 【管理咨询宝藏资料33】某头部咨询公司组织效能提升模型方案 【关键词】战略规划、组织效能、管理咨询 【文件核心观点】 - 通过长期行业积累和市场洞察&#…

四电极测脂模块CSU18M91开发脂肪秤方案

一台脂肪秤通过测试体重、体脂、BMI、水分等数据并给出相应提示&#xff0c;并且许多人都将体脂检测数据作为身体健康指数衡量标准&#xff0c;辅助用户来关注身体健康&#xff0c;同时可以通过蓝牙与手机APP应用相连&#xff0c;记录日常身体变化情况&#xff0c;根据变化情况…

表单验证、属性绑定(一个属性根据另一个属性有无进行操作)

表单验证 一个属性根据另一个属性有无进行操作&#xff08;属性绑定&#xff09; 1、问题描述 ​ 需求&#xff1a;表单里面后两个属性需要根据前面一个属性进行有无判断。如果前面属性没有输入值&#xff0c;则不需要进行操作&#xff1b;如果前面属性有输入值&#xff0c;则…

通过scp在两台设备之间传输文件的sh脚本

前言 因项目需要&#xff0c;需要在两台设备发送大的文件&#xff0c;使用了Libcurl和libssh 和 libsftp等库&#xff0c;发现各种文件&#xff0c;连官方的demo都有文件&#xff0c;于是想到干脆写脚本还简单一些。 环境安装&#xff1a; sudo apt-get install expect 发送&a…

Windows如何安装docker-desktop

下载 docker-desktop设置环境安装wsl可能遇到的错误 下载 docker-desktop 下载官网&#xff1a;https://www.docker.com/products/docker-desktop/ 设置环境 如果没有Hyper-V选项的,按照以下步骤 添加一个文件Hyper-V.bat 添加以下内容,并双击运行后重启电脑 pushd "%~…

喜讯!聚铭网络实力入选「网安新兴赛道厂商速查指南」11大细分赛道

近日&#xff0c;国内首家专业聚焦网络安全商业市场研究分析和加速服务的机构——斯元商业咨询正式发布2024「网安新兴赛道厂商速查指南Emerging Technology Vendor Index」。 聚铭网络凭借在网络安全领域的深厚技术积累、丰富的行业应用经验和良好的客户口碑&#xff0c;成功…

大唐杯学习笔记:Day4

1.1NR帧结构 5G NR中,依然采用一帧10ms,并将一帧分为10子帧,每个子帧为1ms。每个子帧包含几个时隙(slot),每个时隙由14个OFDM符号构成(在常规CP下)。 μ \mu μ Δ f 2 μ ∗ 15 [ K H Z ] \Delta f2^{\mu}*15[KHZ] Δf2μ∗15[KHZ]Cyclic prefix015Normal130Normal260Normal…

运维随录实战(2)之k8s部署应用

一, 创建.gitlab-ci.yml文件 架构流程 文件内容 stages: #设置流水线模版- build # 编译- source2img- deploy # 发布variables: # 设置全局变量MAVEN_PATH: .m2MAVEM_IMAGE: maven:3.8.5-openjdk-17-slim # maven 打包使用的镜像MAVEN_CLI_OPTS: "-s $MAVEN_PATH/set…

红帆OA 多处 SQL注入漏洞复现

0x01 产品简介 红帆iOffice.net从最早满足医院行政办公需求(传统OA),到目前融合了卫生主管部门的管理规范和众多行业特色应用,是目前唯一定位于解决医院综合业务管理的软件,是最符合医院行业特点的医院综合业务管理平台,是成功案例最多的医院综合业务管理软件。 0x02 漏…

java中开源json处理库介绍

在Java生态系统中&#xff0c;有几个常用的开源库用于处理JSON数据。这些库各有特点&#xff0c;适用于不同的场景。下面我将介绍几个流行的Java JSON处理库&#xff0c;包括它们的基本情况、主要特点和核心API。 Jackson 基本情况 Jackson是一个流行的Java库&…

【李沐论文精读】Transformer精读

论文&#xff1a;Attention is All You Need 参考&#xff1a;李沐视频【Transformer论文逐段精读】、Transformer论文逐段精读【论文精读】、李沐视频精读系列 一、摘要 主流的序列转换(sequence transduction)模型都是基于复杂的循环或卷积神经网络&#xff0c;这个模型包含一…

java实现文件上传到本地

很多时候我们都需要进行文件上传和下载的操作&#xff0c;具体怎么实现网上的代码其实也是挺多的&#xff0c;刚好我的项目中也遇到了文件上传和下载的需求&#xff0c;本篇博文具体讲解上传操作&#xff0c;下篇博文讲解下载操作。 我们具体来想一想要将一个从前端传来的文件…

Servlet快速入门

什么是Servlet? Servlet可以用很多方式来描述&#xff0c;这取决于上下文。 是一种技术&#xff0c;它被用来创建一个Web应用程序。 是一个API&#xff0c;它提供了许多接口和类&#xff0c;包括文档。 是一个接口&#xff0c;创建任何Serwlet都必须实现这个接口。 是一个扩展…

Python影像变化监测-跟踪大盐湖的萎缩

使用 Google Colab 中的 Python 分析 Landsat-8 图像(2014-2023)以创建大盐湖表面区域的时间序列 目录 🌅大盐湖萎缩问题简介💾下载 Landsat-8 图像📈统计文件中的大盐湖地区时间序列⚙️处理 Landsat-8 图像🗺️大盐湖图像的可视化🎥 大盐湖缩小的延时摄影📉大盐…

通过联合部署DDoS高防和WAF提升网站防护能力

如果您的网站遭受的攻击既有流量型攻击&#xff0c;又混杂精巧的Web应用层攻击时&#xff08;例如SQL注入、跨站脚本攻击、命令注入等&#xff09;时&#xff0c;推荐您组合使用阿里云DDoS高防和Web 应用防火墙 WAF&#xff08;Web Application Firewall&#xff09;&#xff0…

C语言文件操作,linux文件操作,文件描述符,linux下一切皆文件,缓冲区,重定向

目录 C语言文件操作 如何打开文件以及打开文件方式 读写文件 关闭文件 Linux系统下的文件操作 open 宏标志位 write&#xff0c;read&#xff0c;close&#xff0c;lseek接口 什么是当前路径&#xff1f; linux下一切皆文件 文件描述符 文件描述符排序 C语言文件操…