分类问题经典算法 | 二分类问题 | Logistic回归:公式推导

目录

  • 一. Logistic回归的思想
    • 1. 分类任务思想
    • 2. Logistic回归思想
  • 二. Logistic回归算法:线性可分推导

一. Logistic回归的思想

1. 分类任务思想

分类问题通常可以分为二分类,多分类任务;而对于不同的分类任务,训练的主要目标是不变的,即找到一个分类器,这个分类器可以对新输入的数据进行判断,以确定该数据是属于哪个类别

对于分类任务,我们常设函数为 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0


下面我们先来讨论二分类任务:
在这里插入图片描述
对于有两个特征的分类任务来说,我们的目的是寻找一条决策边界,使得这两个特征可以被区分开,如上图:

假设我们认为,决策边界为 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0
当输入一个新数据 ( x 1 0 , x 2 0 ) (x_{1_{0}},x_{2_{0}}) (x10,x20)
对于蓝色特征(右上方)就会得到:

A x 1 0 + B x 2 0 + C > 0 Ax_{1_{0}}+Bx_{2_{0}}+C > 0 Ax10+Bx20+C>0,即正样本

对于红色特征(左下方)就会得到:

A x 1 0 + B x 2 0 + C < 0 Ax_{1_{0}}+Bx_{2_{0}}+C < 0 Ax10+Bx20+C<0,即负样本

这里强调一点,对于分类任务:
     A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0描述的不再是特征与结果之间的关系,而是特征与特征之间的关系
    我们训练的目标,从将一个特征值带入方程来求另一个特征值变成了将两个特征值带入求 A x 1 + B x 2 + C = 0 Ax_{1}+Bx_{2}+C = 0 Ax1+Bx2+C=0的值

2. Logistic回归思想

Logistic回归算法并不满足于上述常规分类思想,而是在其基础上引入了概率的概念,即:

当输入一个新数据 ( x 1 0 , x 2 0 ) (x_{1_{0}},x_{2_{0}}) (x10,x20)

若该数据落在决策边界上:

该样本点是正样本或负样本的概率都是0.5

若该数据落在决策边界左下方,且距离决策边界越远:

该样本点为负样本的概率越大,为正样本的概率越小

若该数据落在决策边界右上方,且距离决策边界越远:

该样本点为正样本的概率越大,为负样本的概率越小


上述描述中,不难看出,Logistic回归是将距离与概率进行关联,那么具体怎样实现呢?

首先我们定义Logistic函数: y = 1 1 + e − x y = \frac{1}{1+e^{-x} } y=1+ex1
其中,x为样本点到决策边界的距离,即 A x 1 + B x 2 + C = 0 的值 Ax_{1}+Bx_{2}+C = 0的值 Ax1+Bx2+C=0的值

对于公式,简单解析下:

  1. 公式为什么会出现e?

求导方便

  1. 为什么公式中样本点到决策边界距离的计算方式与数学中不符?

数学中,点到直线的公式为 A x 0 + B y 0 + C A 2 + B 2 \frac{Ax_{0}+By_{0}+C }{\sqrt{A^{2}+ B^{2}} } A2+B2 Ax0+By0+C,其中 A 2 + B 2 \sqrt{A^{2}+ B^{2}} A2+B2 可以看作一个整数
公式中,我们求得的距离之所以没有除以 A 2 + B 2 \sqrt{A^{2}+ B^{2}} A2+B2 ,是因为每个点的相对距离是一样的

在这里插入图片描述
通过观察函数图像,我们可以看出这个函数非常符合Logistic回归思想:

	自变量x:样本点到决策边界的距离d因变量y:样本点属于正负样本的概率P当自变量为0时,P=0.5当自变量趋近-∞时,P趋近于0当自变量趋近+∞时,P趋近取1【注意】这里的距离是有正有负的

由于Logistic函数的形状类似于S,所以该函数又被称为Sigmoid函数

二. Logistic回归算法:线性可分推导

下面我们来具体聊Logistic回归算法,但在开始之前,我们先来明确分类的种类:

	对于二分类任务目标:我们需要寻找一个决策边界,从而达到将两类样本点区分的目的这里所谓的决策边界,即分类问题中进行分类决策的依据:对于二维空间,决策边界是一条直线对于三维空间,决策空间是一个平面对于多为空间,决策边界是一个超平面也就是说:当上面这些决策边界存在时,我们认为这些样本点是线性可分的当上面这些决策边界不存在时,我们认为这些样本点是线性不可分的;比如:找不到一条直线,将样本进行二分类这里补充一点:对于线性不可分的情况,我们的解决方法其实是多项式扩展

那么,接下来我们先来讨论二维空间中的线性可分问题

首先我们先用公式阐述我们的问题:

存在一条决策边界 f ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 = θ T X , f ( x ) 为距离 f(x)=\theta _{0} +\theta _{1}x_{1}+\theta _{2}x_{2} = \theta ^{T} X,f(x)为距离 f(x)=θ0+θ1x1+θ2x2=θTXf(x)为距离

其中,令 g ( x ) = 1 1 + e − x , g ( x ) 为概率 g(x) = \frac{1}{1+e^{-x} },g(x)为概率 g(x)=1+ex1g(x)为概率
则,会得到 h θ ( x ) = g ( f ( x ) ) = g ( θ 0 + θ 1 x 1 + θ 2 x 2 ) h_{\theta } (x) = g(f(x))= g(\theta _{0}+\theta _{1}x_{1}+\theta _{2}x_{2} ) hθ(x)=g(f(x))=g(θ0+θ1x1+θ2x2)
当确定 θ 0 , θ 1 , θ 2 \theta _{0},\theta _{1},\theta _{2} θ0θ1θ2后,就可以用 h θ ( x ) h_{\theta } (x) hθ(x)对新数据进行预测;需要注意的是,此时预测的是样本属于正样本的概率

结合上面对于问题的描述,我们开始对公式进行推导


假设我们采集到数据后,进行标注,得到数据集如下:

x 1 ( i ) , x 2 ( i ) , . . . , x N ( i ) , y ( i ) x_{1}^{(i)}, x_{2}^{(i)}, ... , x_{N}^{(i)}, y^{(i)} x1(i),x2(i),...,xN(i),y(i)
其中,数据集的正样本标注为 y ( i ) = 1 y^{(i)}=1 y(i)=1
其中,数据集的负样本标注为 y ( i ) = 0 y^{(i)}=0 y(i)=0

对于线性可分问题,存在决策边界为:
θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ N x N = 0 \theta _{0}+ \theta _{1}x_{1}+\theta _{2}x_{2}+ ... +\theta _{N}x_{N} = 0 θ0+θ1x1+θ2x2+...+θNxN=0

则,令
d = θ 0 + θ 1 x 1 + θ 2 x 2 + . . . + θ N x N ,这里的距离 d 有正负 d=\theta _{0}+ \theta _{1}x_{1}+\theta _{2}x_{2}+ ... +\theta _{N}x_{N},这里的距离d有正负 d=θ0+θ1x1+θ2x2+...+θNxN,这里的距离d有正负

如果带入每个样本的特征值,就会得到每个样本点到直线的距离,即:
d = θ 0 + θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + . . . + θ N x N ( i ) d = \theta _{0}+ \theta _{1}x_{1}^{(i)}+\theta _{2}x_{2}^{(i)}+ ... +\theta _{N}x_{N}^{(i)} d=θ0+θ1x1(i)+θ2x2(i)+...+θNxN(i)
根据Logistic函数
y = 1 1 + e − x y = \frac{1}{1+e^{-x}} y=1+ex1
带入关于 θ \theta θ的函数d,我们可以得到
h θ ( x ) = 1 1 + e − d ( θ ) h_{\theta } (x) = \frac{1}{1+e^{-d(\theta )}} hθ(x)=1+ed(θ)1

注意:
此时计算的 h θ ( x ) h_{\theta } (x) hθ(x)结果是以正样本为依据,即

所计算的样本属于 正样本/正类 的概率

同理,我们就会得到计算样本属于 负样本/负类 的概率


{ P ( y = 1 ∣ x ; θ ) = h θ ( x ) P ( y = 0 ∣ x ; θ ) = 1 − h θ ( x ) \left\{\begin{matrix}P(y=1|x;\theta ) = h_{\theta }(x) \\P(y=0|x;\theta ) = 1-h_{\theta }(x) \end{matrix}\right. {P(y=1∣x;θ)=hθ(x)P(y=0∣x;θ)=1hθ(x)
合并后,我们会得到
P ( y ∣ x ; θ ) = h θ ( x ) y [ 1 − h θ ( x ) ] 1 − y P(y|x;\theta ) = h_{\theta }(x)^{y}\left [ 1-h_{\theta }(x) \right ]^{1-y} P(yx;θ)=hθ(x)y[1hθ(x)]1y
这样,我们就可以得到关于 θ \theta θ的似然函数:
L ( θ ) = ∏ i = 1 M h θ ( x ( i ) ) y ( i ) [ 1 − h θ ( x ( i ) ) ] 1 − y ( i ) L(\theta)=\prod_{i=1}^{M} h_{\theta }(x^{(i)} )^{y^{(i)} }\left [ 1-h_{\theta }(x^{(i)}) \right ]^{1-y^{(i)}} L(θ)=i=1Mhθ(x(i))y(i)[1hθ(x(i))]1y(i)

为了方便计算,我们对似然求对数,得到
l ( θ ) = l n [ L ( θ ) ] = ∑ i = 1 M { y ( i ) l n [ h θ ( x ( i ) ) ] + ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } l(\theta )=ln\left [ L(\theta)\right ]=\sum_{i=1}^{M}\left \{y^{(i)}ln[h_{\theta}(x^{(i)} )]+(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} l(θ)=ln[L(θ)]=i=1M{y(i)ln[hθ(x(i))]+(1y(i))ln[1hθ(x(i))]}
下面,就到了我们熟悉的环节,求 θ \theta θ偏导

∂ l ( θ ) ∂ ( θ j ) = ∑ i = 1 M ∂ { y ( i ) l n [ h θ ( x ( i ) ) ] + ( 1 − y ( i ) ) l n [ 1 − h θ ( x ( i ) ) ] } ∂ ( θ j ) \frac{\partial l(\theta )}{\partial (\theta _{j} )} =\sum_{i=1}^{M}\frac{\partial\left \{ y^{(i)}ln[h_{\theta}(x^{(i)} )]+(1-y^{(i)})ln[1-h_{\theta}(x^{(i)} )] \right \} }{\partial(\theta _{j})} (θj)l(θ)=i=1M(θj){y(i)ln[hθ(x(i))]+(1y(i))ln[1hθ(x(i))]}

      = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) =\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} =i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))(θj)(hθ(x(i)))

这里我们来推导 ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} (θj)(hθ(x(i)))

其中, h θ ( x ) = 1 1 + e − d ( θ ) h_{\theta } (x) = \frac{1}{1+e^{-d(\theta )}} hθ(x)=1+ed(θ)1,又 y = 1 1 + e − x y = \frac{1}{1+e^{-x}} y=1+ex1

所以我们先对y进行求导

d y d x = [ − 1 ( 1 + e − x ) 2 ∗ e − x ∗ ( − 1 ) ] \frac{\mathrm{d} y}{\mathrm{d} x} =\left [ -\frac{1}{(1+e^{-x} )^{2}}\ast e^{-x}\ast (-1)\right ] dxdy=[(1+ex)21ex(1)]

     = 1 1 + e − x ∗ e − x 1 + e − x = \frac{1}{1+e^{-x}} \ast \frac{e^{-x}}{1+e^{-x}} =1+ex11+exex

     = 1 1 + e − x ∗ ( 1 − 1 1 + e − x ) =\frac{1}{1+e^{-x}} \ast (1-\frac{1}{1+e^{-x}}) =1+ex1(11+ex1)

     = y ∗ ( 1 − y ) =y \ast (1-y) =y(1y)

对于 ∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )} (θj)(hθ(x(i)))我们就会得到

∂ ( h θ ( x ( i ) ) ) ∂ ( θ j ) = h θ ( x ( i ) ) ∗ [ 1 − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ∂ θ j \frac{\partial(h_{\theta}(x^{(i)})) }{\partial (\theta _{j} )}=h_{\theta}(x^{(i)})\ast \left [ 1-h_{\theta}(x^{(i)}) \right ] \ast \frac{\partial d(\theta )}{\partial \theta _{j} } (θj)(hθ(x(i)))=hθ(x(i))[1hθ(x(i))]θjd(θ)

∂ l ( θ ) ∂ θ j = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∂ ( h θ ( x ( i ) ) ) ∂ θ j \frac{\partial l(\theta )}{\partial \theta _{j} }=\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\frac{\partial(h_{\theta}(x^{(i)})) }{\partial \theta _{j} } θjl(θ)=i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))θj(hθ(x(i)))

      = ∑ i = 1 M ( y ( i ) h θ ( x ( i ) ) − 1 − y ( i ) 1 − h θ ( x ( i ) ) ) ∗ h θ ( x ( i ) ) ∗ [ 1 − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ( i ) ∂ θ j =\sum_{i=1}^{M}( \frac{y^{(i)}}{h_{\theta}(x^{(i)})} -\frac{1-y^{(i)}}{1-h_{\theta}(x^{(i)})})\ast h_{\theta}(x^{(i)})\ast \left [ 1-h_{\theta}(x^{(i)}) \right ] \ast \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} } =i=1M(hθ(x(i))y(i)1hθ(x(i))1y(i))hθ(x(i))[1hθ(x(i))]θjd(θ)(i)
      = ∑ i = 1 M [ y ( i ) − h θ ( x ( i ) ) ] ∗ ∂ d ( θ ) ( i ) ∂ θ j =\sum_{i=1}^{M}[y^{(i)}-h_{\theta}(x^{(i)} ) ] \ast \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} } =i=1M[y(i)hθ(x(i))]θjd(θ)(i)

根据 d ( θ ) ( i ) = θ 0 x 0 ( i ) + θ 1 x 1 ( i ) + θ 2 x 2 ( i ) + . . . + θ N x N ( i ) d(\theta )^{(i)} = \theta _{0}x_{0}^{(i)}+ \theta _{1}x_{1}^{(i)}+\theta _{2}x_{2}^{(i)}+ ... +\theta _{N}x_{N}^{(i)} d(θ)(i)=θ0x0(i)+θ1x1(i)+θ2x2(i)+...+θNxN(i)
我们可以得到
∂ d ( θ ) ( i ) ∂ θ j = x j ( i ) \frac{\partial d(\theta )^{(i)} }{\partial \theta _{j} }=x_{j}^{(i)} θjd(θ)(i)=xj(i)

∂ l ( θ ) ∂ θ j = ∑ i = 1 M [ y ( i ) − h θ ( x ( i ) ) ] ∗ x j ( i ) \frac{\partial l(\theta )}{\partial \theta _{j} }=\sum_{i=1}^{M}[y^{(i)}-h_{\theta}(x^{(i)} ) ] \ast x_{j}^{(i)} θjl(θ)=i=1M[y(i)hθ(x(i))]xj(i)

为了求解似然函数的最大值,我们需要令导数等于0,即
∂ l ( θ ) ∂ θ j = 0 \frac{\partial l(\theta )}{\partial \theta _{j} }=0 θjl(θ)=0

这里继续向下推会发现,求解偏导为0的计算十分困难

由此,我们会想到用梯度下降优化模型参数,那么,具体怎么优化,我们下一篇再见啦!


感谢阅读🌼
如果喜欢这篇文章,记得点赞👍和转发🔄哦!
有任何想法或问题,欢迎留言交流💬,我们下次见!

祝愉快🌟!


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/721097.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

RabbitMQ(三):AMQP协议

目录 1 AMQP协议1.1 AMQP协议介绍1、AMQP是什么2、消息代理中间件的职责 1.2 AMQP 0-9-1模型1、AMQP的工作过程2、交换器和交换器类型3、队列队列属性队列名称队列持久化 1.3 几个概念1、绑定2、消费者3、消息确认4、预取消息5、消息属性和有效载荷&#xff08;消息主体&#x…

HTML5:七天学会基础动画网页7

CSS3高级特效 2D转换方法 移动:translate() 旋转:rotate() 缩放:scale() 倾斜:skew() 属性:transform 作用:对元素进行移动,旋转,缩放,倾斜。 2D移动 设定元素从当前位置移动到给定位置(x,y) 方法 说明 translate(x,y) 2D转换 沿X轴和Y轴移…

概率基础——极大似然估计

概率基础——极大似然估计 引言 极大似然估计&#xff08;Maximum Likelihood Estimation&#xff0c;简称MLE&#xff09;是统计学中最常用的参数估计方法之一&#xff0c;它通过最大化样本的似然函数来估计参数值&#xff0c;以使得样本出现的概率最大化。极大似然估计在各…

学习JAVA的第十三天(基础)

目录 API之Arrays 将数组变成字符串 二分查找法查找元素 拷贝数组 填充数组 排序数组 Lambda表达式 集合的进阶 单列集合 体系结构 Collection API之Arrays 操作数组的工具类 将数组变成字符串 //将数组变成字符串char[] arr {a,b,c,d,e};System.out.println(Arra…

Python常用验证码标注和识别(需求分析和实现思路)

目录 一、需求分析 图像验证码识别&#xff1a; 文本验证码识别&#xff1a; 二、实现思路 三、案例与代码 四、总结与展望 在当今的数字时代&#xff0c;验证码&#xff08;CAPTCHA&#xff09;作为一种安全机制&#xff0c;广泛应用于网站和应用程序中&#xff0c;以防…

Method Not Allowed (GET): /user/logout/

在使用 DJango 框架使用框架默认的【登出】视图时&#xff0c;发现报错如下&#xff1a; Method Not Allowed (GET): /user/logout/ Method Not Allowed: /user/logout/ 退出部分的代码原先如下&#xff08;登出部分见第6行&#xff09;&#xff1a; <p><a href"…

MySQL 8.0.35 企业版安装和启用TDE插件keyring_encrypted_file

本文主要记录MySQL企业版TDE插件keyring_encrypted_file的安装和使用。 TDE说明 TDE( Transparent Data Encryption,透明数据加密) 指的是无需修改应用就可以实现数据的加解密&#xff0c;在数据写磁盘的时候加密&#xff0c;读的时候自动解密。加密后其他人即使能够访问数据库…

Unity 摄像机的深度切换与摄像机画面投影

摄像机可选&#xff1a;透视、正交 正交类似投影&#xff0c;1比1 透视类似人眼&#xff0c;近大远小 摄像机投影 在项目中新建&#xff1a;渲染器纹理 将新建纹理拖动到相机的目标纹理中 新建一个平面&#xff0c;将新建材质组件放到平面中即可。 相机深度切换 使用代…

93. 通用防重幂等设计

文章目录 一、防重与幂等的区别二、幂等性的应用场景三、幂等性与防重关系四、处理流程 一、防重与幂等的区别 防重与幂等是在 Web 应用程序和分布式系统中重要而又非常常见的问题。 防重 防重是指在多次提交同样的请求过程中&#xff0c;系统会检测和消除重复的数据&#xf…

HTTP有什么缺陷,HTTPS是怎么解决的

缺陷 HTTP是明文的&#xff0c;谁都能看得懂&#xff0c;HTTPS是加了TLS/SSL加密的&#xff0c;这样就不容易被拦截和攻击了。 SSL是TLS的前身&#xff0c;他俩都是加密安全协议。前者大部分浏览器都不支持了&#xff0c;后者现在用的多。 对称加密 通信双方握有加密解密算法…

python自学3

第一节第六章 数据的列表 列表也是支持嵌套的 列表的下标索引 反向也可以 嵌套也可以 列表的常用操作 什么是列表的方法 学习到的第一个方法&#xff0c;index&#xff0c;查询元素在列表中的下标索引值 index查询方法 修改表功能的方法 插入方法 追加元素 单个元素追加 多…

YOLO v9训练自己数据集

原以为RT-DETR可以真的干翻YOLO家族&#xff0c;结果&#xff0c;&#xff01;&#xff01;&#xff01;&#xff01; 究竟能否让卷积神经网络重获新生&#xff1f; 1.数据准备 代码地址&#xff1a;https://github.com/WongKinYiu/yolov9 不能科学上网的评论区留言 数据集…

教育知识与能力保分卷一(中学)

2.在教育学的发展过程中&#xff0c;代表马克思主义的教育学著作是&#xff08;A &#xff09;。 A.凯洛夫的《教育学》 B.赞可夫的《教学与发展》 C.杜威的《民主主义与教育》 D.昆体良的《论演说家的教育》 8.小贺在一次期…

电脑不小心格式化了,怎么恢复?

在这个数字化时代&#xff0c;电脑已经成为我们日常生活和工作中不可或缺的工具。然而&#xff0c;有时我们可能会不小心格式化电脑硬盘&#xff0c;导致重要数据的丢失。那么&#xff0c;电脑不小心格式化了&#xff0c;怎么恢复&#xff1f; 别着急&#xff0c;在本篇攻略中&…

掌握PDF全面指南:Python开发者的高效编程技巧

掌握PDF全面指南&#xff1a;Python开发者的高效编程技巧 简介PDF基础知识PDF的结构常见用途PDF在开发中的挑战 PDF处理库介绍PyPDF2ReportLabPDFMiner辅助库 读取和分析PDF文件使用PyPDF2读取PDF文件提取PDF中的文本和元数据分析PDF结构和内容 编辑和修改PDF文件合并多个PDF文…

如何制作一个分销商城小程序_揭秘分销商城小程序的制作秘籍

打造赚钱神器&#xff01;揭秘分销商城小程序的制作秘籍 在这个数字化高速发展的时代&#xff0c;拥有一个属于自己的分销商城小程序&#xff0c;已成为众多商家和创业者的必备利器。它不仅能够快速搭建起自己的在线销售渠道&#xff0c;还能够利用分销模式&#xff0c;迅速裂…

安全特性 悬垂指针

英文名称 Dangling point&#xff0c;它还有一个兄弟叫 wild point - 野指针。 简单的对Dangling point做一个类比&#xff1a;我换手机号码了&#xff0c;但是没有通知老板&#xff0c;老板通讯录存的是我的旧号码。然后老板打电话有两种可能&#xff1a;打不通电话或者电话打…

Linux常用命令(超详细)

一、基本命令 1.1 关机和重启 关机 shutdown -h now 立刻关机 shutdown -h 5 5分钟后关机 poweroff 立刻关机 重启 shutdown -r now 立刻重启 shutdown -r 5 5分钟后重启 reboot 立刻重启 1.2 帮助命令 –help命令 shutdown --help&#xff1a; ifconfig --help&#xff1a;查看…

AWS ECR(AWS云里面的docker镜像私库)

问题 上一篇文章&#xff0c;在AWS云上面部署了k8s集群&#xff0c;这次接下来&#xff0c;需要在一个docker镜像私库。 步骤 创建docker镜像私库 打开AWS ECR主页&#xff0c;创建一个docker镜像私库&#xff0c;如下图&#xff1a; 设置私有镜像库名称&#xff0c;直接创…

AI短视频矩阵运营软件|抖音视频矩阵控制工具

【罐头鱼AI传单功能介绍】 罐头鱼AI传单是一款专为短视频矩阵运营而设计的智能软件&#xff0c;旨在帮助用户高效管理和运营多个抖音账号&#xff0c;并提供一系列强大的功能来优化视频内容创作和发布流程。QQ:290615413以下是软件框架&#xff0c;详细介绍其功能和特点&#…