YOLOv8-Openvino-ByteTrack【CPU】

YOLOv5-Openvino和ONNXRuntime推理【CPU】
YOLOv6-Openvino和ONNXRuntime推理【CPU】
YOLOv8-Openvino和ONNXRuntime推理【CPU】
YOLOv9-Openvino和ONNXRuntime推理【CPU】

注:YOLOv8和YOLOv9代码内容基本一致!
全部代码Github:https://github.com/Bigtuo/YOLOv8_Openvino

1 环境:

CPU:i5-12500
Python:3.8.18
VS2019
注:Bytetrack中的lap和cython_bbox库需要编译安装,直接安装报错,故下载VS2019。

2 安装Openvino和ONNXRuntime

2.1 Openvino简介

Openvino是由Intel开发的专门用于优化和部署人工智能推理的半开源的工具包,主要用于对深度推理做优化。

Openvino内部集成了Opencv、TensorFlow模块,除此之外它还具有强大的Plugin开发框架,允许开发者在Openvino之上对推理过程做优化。

Openvino整体框架为:Openvino前端→ Plugin中间层→ Backend后端
Openvino的优点在于它屏蔽了后端接口,提供了统一操作的前端API,开发者可以无需关心后端的实现,例如后端可以是TensorFlow、Keras、ARM-NN,通过Plugin提供给前端接口调用,也就意味着一套代码在Openvino之上可以运行在多个推理引擎之上,Openvino像是类似聚合一样的开发包。

2.2 ONNXRuntime简介

ONNXRuntime是微软推出的一款推理框架,用户可以非常便利的用其运行一个onnx模型。ONNXRuntime支持多种运行后端包括CPU,GPU,TensorRT,DML等。可以说ONNXRuntime是对ONNX模型最原生的支持。

虽然大家用ONNX时更多的是作为一个中间表示,从pytorch转到onnx后直接喂到TensorRT或MNN等各种后端框架,但这并不能否认ONNXRuntime是一款非常优秀的推理框架。而且由于其自身只包含推理功能(最新的ONNXRuntime甚至已经可以训练),通过阅读其源码可以解深度学习框架的一些核心功能原理(op注册,内存管理,运行逻辑等)
总体来看,整个ONNXRuntime的运行可以分为三个阶段,Session构造,模型加载与初始化和运行。和其他所有主流框架相同,ONNXRuntime最常用的语言是python,而实际负责执行框架运行的则是C++。

2.3 安装

pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
pip install onnxruntime -i  https://pypi.tuna.tsinghua.edu.cn/simple

3 YOLOv8和ByteTrack原理

YOLOv8官网
YOLOv8原理

ByteTrack官网
ByteTrack算法步骤详解

3.1 安装lap和cython_bbox

1. lap
cd lap-0.4.0
python setup.py install2. cython_bbox【上传的文件可以直接进行第4步】
pip install cython -i https://pypi.tuna.tsinghua.edu.cn/simple【需先安装】
cd cython_bbox-0.1.3
(1)下载cython-bbox
(2)解压文件
(3)【已修改】在解压后的目录中,找到steup.py 文件,把extra_compile_args=[-Wno-cpp’],修改为extra_compile_args = {‘gcc’: [/Qstd=c99’]}
(4)在解压文件目录下运行python setup.py build_ext install

4 YOLOv8+ByteTrack主代码

下面代码整个处理过程主要包括:预处理—>推理—>后处理—>是/否跟踪—>画图。
假设图像resize为640×640,
前处理输出结果维度:(1, 3, 640, 640);
推理输出结果维度:(1, 84, 8400),其中84表示4个box坐标信息+80个类别概率,8400表示80×80+40×40+20×20;
后处理输出结果维度:(5, 6),其中第一个5表示图bus.jpg检出5个目标,第二个维度6表示(x1, y1, x2, y2, conf, cls);
跟踪输入维度:(-1, 5),其中第二个维度5表示(x1, y1, x2, y2, conf);
跟踪输出维度:(-1, 6),其中第二个维度6表示(x1, y1, x2, y2, conf, ids)。

注:YOLOv9换模型文件可直接使用!

import argparse
import time 
import cv2
import numpy as np
from openvino.runtime import Core  # pip install openvino -i  https://pypi.tuna.tsinghua.edu.cn/simple
import onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime,默认安装CPUimport copy
from bytetrack.byte_tracker import BYTETracker# COCO默认的80类
CLASSES = ['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven','toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush']class OpenvinoInference(object):def __init__(self, onnx_path):self.onnx_path = onnx_pathie = Core()self.model_onnx = ie.read_model(model=self.onnx_path)self.compiled_model_onnx = ie.compile_model(model=self.model_onnx, device_name="CPU")self.output_layer_onnx = self.compiled_model_onnx.output(0)def predirts(self, datas):predict_data = self.compiled_model_onnx([datas])[self.output_layer_onnx]return predict_dataclass YOLOv8:"""YOLOv8 object detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640), infer_tool='openvino'):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""self.infer_tool = infer_toolif self.infer_tool == 'openvino':# 构建openvino推理引擎self.openvino = OpenvinoInference(onnx_model)self.ndtype = np.singleelse:# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.classes = CLASSES  # 加载模型类别self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小self.color_palette = np.random.uniform(0, 255, size=(len(self.classes), 3))  # 为每个类别生成调色板def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)print('预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()if self.infer_tool == 'openvino':preds = self.openvino.predirts(im)else:preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]print('推理时间:{:.2f}s'.format(time.time() - t2))# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)print('后处理时间:{:.3f}s'.format(time.time() - t3))return boxes# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""x = preds  # outputs: predictions (1, 84, 8400)# Transpose the first output: (Batch_size, xywh_conf_cls, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls)x = np.einsum('bcn->bnc', x)  # (1, 8400, 84)# Predictions filtering by conf-thresholdx = x[np.amax(x[..., 4:], axis=-1) > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], np.amax(x[..., 4:], axis=-1), np.argmax(x[..., 4:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# 绘框def draw_and_visualize(self, im, bboxes, video_writer, vis=False, save=False, is_track=False):"""Draw and visualize results.Args:im (np.ndarray): original image, shape [h, w, c].bboxes (numpy.ndarray): [n, 6], n is number of bboxes.vis (bool): imshow using OpenCV.save (bool): save image annotated.Returns:None"""# Draw rectangles if not is_track:for (*box, conf, cls_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),self.color_palette[int(cls_)], 1, cv2.LINE_AA)cv2.putText(im, f'{self.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette[int(cls_)], 2, cv2.LINE_AA)else:for (*box, conf, id_) in bboxes:# draw bbox rectanglecv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),(0, 0, 255), 1, cv2.LINE_AA)cv2.putText(im, f'{id_}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 0, 255), 2, cv2.LINE_AA)# Show imageif vis:cv2.imshow('demo', im)cv2.waitKey(1)# Save videoif save:video_writer.write(im)class ByteTrackerONNX(object):def __init__(self, args):self.args = argsself.tracker = BYTETracker(args, frame_rate=30)def _tracker_update(self, dets, image):online_targets = []if dets is not None:online_targets = self.tracker.update(dets[:, :-1],[image.shape[0], image.shape[1]],[image.shape[0], image.shape[1]],)online_tlwhs = []online_ids = []online_scores = []for online_target in online_targets:tlwh = online_target.tlwhtrack_id = online_target.track_idvertical = tlwh[2] / tlwh[3] > 1.6if tlwh[2] * tlwh[3] > self.args.min_box_area and not vertical:online_tlwhs.append(tlwh)online_ids.append(track_id)online_scores.append(online_target.score)return online_tlwhs, online_ids, online_scoresdef inference(self, image, dets):"""Args: dets: 检测结果, [x1, y1, x2, y2, score]Returns: np.array([[x1, y1, x2, y2, conf, ids], ...])"""bboxes, ids, scores = self._tracker_update(dets, image)if len(bboxes) == 0:return []# Bounding boxes format change: tlwh -> xyxybboxes = np.array(bboxes)bboxes[..., [2, 3]] += bboxes[..., [0, 1]]bboxes = np.c_[bboxes, np.array(scores), np.array(ids)]return bboxesif __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--model', type=str, default='yolov8s.onnx', help='Path to ONNX model')parser.add_argument('--source', type=str, default=str('test.mp4'), help='Path to input image')parser.add_argument('--imgsz', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.45, help='NMS IoU threshold')parser.add_argument('--infer_tool', type=str, default='openvino', choices=("openvino", "onnxruntime"), help='选择推理引擎')parser.add_argument('--is_track', type=bool, default=True, help='是否启用跟踪')parser.add_argument('--track_thresh', type=float, default=0.5, help='tracking confidence threshold')parser.add_argument('--track_buffer', type=int, default=30, help='the frames for keep lost tracks, usually as same with FPS')parser.add_argument('--match_thresh', type=float, default=0.8, help='matching threshold for tracking')parser.add_argument('--min_box_area', type=float, default=10, help='filter out tiny boxes',)parser.add_argument('--mot20', dest='mot20', default=False, action='store_true', help='test mot20.',)args = parser.parse_args()# Build modelmodel = YOLOv8(args.model, args.imgsz, args.infer_tool)bytetrack = ByteTrackerONNX(args)# 读取视频,解析帧数宽高,保存视频cap = cv2.VideoCapture(args.source)width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)fps = cap.get(cv2.CAP_PROP_FPS)frame_count = cap.get(cv2.CAP_PROP_FRAME_COUNT)video_writer = cv2.VideoWriter('demo.mp4', cv2.VideoWriter_fourcc(*"mp4v"), fps, (int(width), int(height)))frame_id = 1while True:start_time = time.time()ret, img = cap.read()if not ret:break# Inferenceboxes = model(img, conf_threshold=args.conf, iou_threshold=args.iou)# trackif args.is_track:boxes = bytetrack.inference(img, boxes)# Visualizeif len(boxes) > 0:model.draw_and_visualize(copy.deepcopy(img), boxes, video_writer, vis=False, save=True, is_track=args.is_track)end_time = time.time() - start_timeprint('frame {}/{} (Total time: {:.2f} ms)'.format(frame_id, int(frame_count), end_time * 1000))frame_id += 1

结果显示如下:

在这里插入图片描述

具体时间消耗:

预处理时间:0.005s(包含Pad)
推理时间:0.09~0.10s
后处理时间:0.001s
ByteTrack时间:0.001~0.002s
注:640×640下,Openvino和ONNXRuntime推理速度相差不大,1280×1280下,Openvino速度更快。

lap+cython-bbox安装

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/720997.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

对于网络IO的理解

网络IO理解 首先服务端将本机地址和端口bind在listensock上,再用listen()去将listensock套接字设置为listen状态,然后调用accept,进入阻塞状态。如果此时有客户端请求连接,就是第一次握手的开始。 客户端会先调用connect来申请连…

BUUCTF crypto做题记录(13)新手向

一、[MRCTF2020]vigenere 这是一道维吉尼亚密码,但由于不知道密钥,所以我们需要采用爆破的方式。Vigenere Solver | guballa.de 答案:flag{vigenere_crypto_crack_man} 二、[MRCTF2020]keyboard 之前做过一个类似的题目,用九宫格…

97 spring 中的泛型类型注入

前言 呵呵 同样是 最近同事碰到的一个问题 他不太懂 英语, 看到的说明是 缺少一个 RedisTemplate 的实例, 但是找到了一个 RedisTemplate 的实例 呵呵 和我这里 spring 版本似乎是不太一样, 错误信息 有一些差异 以下环境基于 jdk8 spring-5.0.4-RELEASE 测试用例 BeanCon…

高效备考一级数据分析师考试《CDA Level I 实操训练营》3月30日开课!

曾经报名了考试,买了教程辅导书,却因为各种原因没有坚持学习,这样的经历可能让你感到沮丧和失望。但是,失败并不代表终结,而是迈向成功的必经之路。为了帮助大家能够快速学习考试相关知识,特别为CDA LEVEL …

transformer--解码器

在编码器中实现了编码器的各种组件,其实解码器中使用的也是这些组件,如下图: 解码器组成部分: 由N个解码器层堆叠而成每个解码器层由三个子层连接结构组成第一个子层连接结构包括一个多头自注意力子层和规范化层以及一个残差连接第二个子层连…

小巧且强大,一键批量操作谁不爱?

软件简介: 软件【下载地址】获取方式见文末。注:推荐使用,更贴合此安装方法! 两款Office批量打印工具展现了优秀的人性化设计:其界面清晰、操作简便。这些工具支持Word、Excel、PPT等多种文档格式进行批量打印&#…

VMware虚拟机安装linux教程

CentOS7下载 下载 (centos.org)https://www.centos.org/download/新建虚拟机 选择自定义安装 这里要注意兼容性,如果是VMware12创建的虚拟机复制到VM11、10或者更低的版本会出现一不兼容的现象。如果是用VMware10创建的虚拟机在VMware12中打开则不会出现兼容性问题…

vue中使用echarts实现人体动态图

最近一直处于开发大屏的项目,在开发中遇到了一个小知识点,在大屏中如何实现人体动态图。然后看了下echarts官方文档,根据文档中的示例调整出来自己想要的效果。 根据文档上发现 series 中 type 类型设置为 象形柱形图,象形柱图是…

SpringCloud之Nacos入门与实战系列

目录 一、Nacos介绍 1.1、配置中心和注册中心的概念 1.2 Nacos 优点 二、Nacos的使用 2.1 以单机模式启动Nacos 2.2 Nacos部署方式介绍 2.3 配置数据源 2.4 开启控制台权限登录 三、配置中心的使用 3.1 创建配置信息 3.2 SpringBoot使用配置中心 四、注册中心的使用 4…

图书推荐|Word文稿之美

让你的文档从平凡到出众! 本书内容 《Word文稿之美》是一本全面介绍Word排版技巧和应用的实用指南。从初步认识数字排版到高效利用模板、图文配置和表格与图表的排版技巧,再到快速修正错误和保护文件,全面系统地讲解数字排版的技术和能力&…

基于Docker部署本地ChatGPT环境

基于Docker部署本地ChatGPT环境 一、拉取镜像 docker pull pengzhile/pandora二、运行镜像 docker run -e PANDORA_CLOUDcloud -e PANDORA_SERVER0.0.0.0:8899 -p 8899:8899 -d pengzhile/pandora三、查看容器是否启动成功 docker ps四、登录 http://IP:8899 这里有两种方…

ssm+springboot音乐播放器网站mybatis+jsp

测试流程 (1) 登录系统、填写用户名、密码选择角色,主要内容:进行权限控制。 (2) 用户查看音乐信息、音乐资讯功能,主要是测试系统实用性、方便性。 (3) 信息修…

【C++】类和对象之初始化列表与static成员

个人主页 : zxctscl 文章封面来自:艺术家–贤海林 如有转载请先通知 文章目录 1. 前言2. 再谈构造函数2.1 构造函数体赋值2.2 初始化列表2.3 explicit关键字 3. static成员3.1 概念3.2 特性 1. 前言 在前面的博客中已经分享有关构造函数 【C】构造函数和…

9.WEB渗透测试-Linux基础知识-Linux用户权限管理(上)

免责声明:内容仅供学习参考,请合法利用知识,禁止进行违法犯罪活动! 内容参考于: 易锦网校会员专享课 上一个内容:8.WEB渗透测试-Linux基础知识-Linux基础操作(二)-CSDN博客 用户管…

uniapp实现进度条组件

首先&#xff0c;在uniapp项目中创建一个自定义组件&#xff0c;可以命名为Progress.vue。在Progress.vue中&#xff0c;编写如下代码&#xff1a; <template><view class"progress"><view class"progress-bar" :style"{width: progr…

缓存淘汰策略看完这篇就够了

LFU 缓存淘汰算法 LFU 是 Least Frequently Used 的缩写&#xff0c;即 最少使用 缓存淘汰算法。LFU算法根据数据项在缓存中的访问频率来决定淘汰哪些数据项。访问频率越高 的数据项被认为是更重要的&#xff0c;访问频率越低 的数据项被认为是更不重要的。 LFU算法的具体工作原…

Kali Linux 2024.1

Kali Linux 2024.1刚刚发布&#xff0c;标志着这个备受欢迎的安全重点Linux发行版在今年的首次重大更新。以其先进的渗透测试和安全审计功能而闻名&#xff0c;它是安全专业人员和爱好者的首选工具。 Kali 2024.1 亮点 本次发布由 Linux 内核 6.6 提供支持&#xff0c;突出了…

C语言qsort函数介绍

前言 学到了函数指针&#xff0c;那这篇博客我们可以根据函数指针&#xff0c;了解一个函数qsort的应用与模拟实现 欢迎关注个人主页&#xff1a;小张同学zkf 若有疑问 评论区见 目录 1.回调函数 2.qsort函数使用 3.qsort模拟实现 1.回调函数 讲这个东西之前我们来认识一下…

mq基础类设计

消息队列就是把阻塞队列这样的数据结构单独提取成一个程序独立进行部署。——>实现生产者消费者模型。 但是阻塞队列是在一个进程内部进行的&#xff1b; 消息队列是在进程与进程之间进行实现的&#xff0c; 解耦合&#xff1a;就是在分布式系统中&#xff0c;A服务器调用B…

Tomcat -2

① 单机反向代理 7-2 代理服务器 7-5 tomcat 设置 7-3 测试&#xff1a; 代理服务器那里写什么就显示什么 ② 多机反向代理 实现动静分离和负载均衡 7-2 nginx 7-3 7-5 测试&#xff1a; 看静态&#xff1a; 看动态&#xff1a; ③ 反向代理多机多级 7-2 7-1 和 7-4 7-3…