算法沉淀——动态规划之完全背包问题(leetcode真题剖析)

在这里插入图片描述

算法沉淀——动态规划之完全背包问题

  • 01.【模板】完全背包
  • 02.零钱兑换
  • 03.零钱兑换 II
  • 04.完全平方数

完全背包问题是背包问题的一种变体,与01背包问题不同,它允许你对每种物品进行多次选择。具体来说,给定一个固定容量的背包,一组物品,每个物品有重量和价值,目标是找到在背包容量范围内,使得背包中的物品总价值最大的组合。

相较于01背包问题,完全背包问题允许对每个物品进行多次选择,即每个物品都有无限件可用。

动态规划解法

  1. 定义状态: 通常使用二维数组dp[i][j]表示在前i个物品中,背包容量为j时的最大总价值。

  2. 状态转移方程: 考虑第i个物品,可以选择放入背包或者不放入。如果选择放入,那么总价值为dp[i][j-weight[i]] + value[i],即前i个物品的总价值加上当前物品的价值。如果选择不放入,那么总价值为dp[i-1][j],即前i-1个物品的总价值。因此,状态转移方程为:

    dp[i][j] = max(dp[i-1][j], dp[i][j-weight[i]] + value[i])
    

    其中,dp[i-1][j]表示不放入第i个物品,dp[i][j-weight[i]] + value[i]表示放入第i个物品。

  3. 初始条件:i=0时,表示前0个物品,总价值为0;当j=0时,表示背包容量为0,总价值也为0。

  4. 遍历顺序: 外层循环遍历物品,内层循环遍历背包容量。

  5. 返回结果: 最终结果存储在dp[N][W]中,其中N为物品数量,W为背包容量。

例子

假设有如下物品:

物品1:重量=2,价值=3
物品2:重量=3,价值=4
物品3:重量=4,价值=5

背包容量为W=8,我们要求解在这个条件下的最大总价值。

按照上述动态规划解法,构建状态转移表如下:

重量/价值      0   1   2   3   4   5   6   7   8----------------------------------------------物品0        0   0   0   0   0   0   0   0   0物品1        0   0   3   6   9   12  15  18  21物品2        0   0   3   6   9   12  15  18  21物品3        0   0   3   6   9   12  15  18  21

因此,最终结果为dp[3][8] = 21,表示在背包容量为8的情况下,最大总价值为21。这意味着最优解是选择物品1,物品2和物品3各两件放入背包。

01.【模板】完全背包

题目链接:https://www.nowcoder.com/practice/237ae40ea1e84d8980c1d5666d1c53bc?tpId=230&tqId=2032575&ru=/exam/oj&qru=/ta/dynamic-programming/question-ranking&sourceUrl=%2Fexam%2Foj%3Fpage%3D1%26tab%3D%25E7%25AE%2597%25E6%25B3%2595%25E7%25AF%2587%26topicId%3D196

描述

你有一个背包,最多能容纳的体积是V。

现在有n种物品,每种物品有任意多个,第i种物品的体积为vi,价值为wi。

(1)求这个背包至多能装多大价值的物品?

(2)若背包恰好装满,求至多能装多大价值的物品?

输入描述

第一行两个整数n和V,表示物品个数和背包体积。

接下来n行,每行两个vi和wi表示第i种物品的体积和价值。

1≤n,V≤1000

输出描述

输出有两行,第一行输出第一问的答案,第二行输出第二问的答案,如果无解请输出0。

示例1

输入:

2 6
5 10
3 1

输出:

10
2

示例2

输入:

3 8
3 10
9 1
10 1

输出:

20
0

说明:

无法恰好装满背包。

示例3

输入:

6 13
13 189
17 360
19 870
14 184
6 298
16 242

输出:

596
189

说明:

可以装5号物品2个,达到最大价值298*2=596,若要求恰好装满,只能装1个1号物品,价值为189.

思路

第一问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积不超过 j,所有选法中能挑选出的最大价值。
  2. 状态转移方程:
    • 根据最后一步的状况,分情况讨论:
      • 0 个第 i 个物品:相当于去前 i - 1 个物品中挑选,总体积不超过 j,最大价值为 dp[i - 1][j]
      • 1 个第 i 个物品:相当于去前 i - 1 个物品中挑选,总体积不超过 j - v[i]。此时最大价值为 dp[i - 1][j - v[i]] + w[i]
    • 综上,状态转移方程为:dp[i][j] = max(dp[i - 1][j], dp[i - 1][j - v[i]] + w[i])
  3. 初始化:
    • 多加一行,将第一行初始化为 0,因为什么也不选时,满足体积不小于 j 的情况,此时价值为 0
  4. 填表顺序:
    • 从上往下填表。
  5. 返回值:
    • 根据状态表示,返回 dp[n][V]

第二问:

  1. 状态表示:
    • dp[i][j] 表示从前 i 个物品中挑选,总体积正好等于 j,所有选法中能挑选出来的最大价值。
  2. 状态转移方程:
    • dp[i][j] = max(dp[i - 1][j], dp[i][j - v[i]] + w[i])
    • 在使用 dp[i][j - v[i]] 时,需要判断 j >= v[i]dp[i][j - v[i]] 表示的状态是否存在,即 dp[i][j - v[i]] != -1
  3. 初始化:
    • 多加一行,将第一个格子设置为 0,因为正好能凑齐体积为 0 的背包;但是第一行后面的格子都设置为 -1,因为没有物品,无法满足体积大于 0 的情况。
  4. 填表顺序:
    • 从上往下填表。
  5. 返回值:
    • 由于最后可能凑不成体积为 V 的情况,因此返回之前需要特判一下。

空间优化:

对于背包问题,一般都可以使用「滚动数组」来进行空间上的优化,即减少状态表示的维度。

在 01 背包问题中,优化的结果为:

  1. 删掉所有的横坐标。
  2. 修改一下 j 的遍历顺序。

这样的优化是因为在计算 dp[i][j] 时,只依赖于上一行 dp[i-1][j]dp[i-1][j-v[i]],而 dp[i-1][j-v[i]] 在当前行的计算过程中已经被更新过,因此不需要保留整个二维数组。

代码

#include <iostream>
#include <algorithm>
#include <cstring>
using namespace std;const int N=1002;
int n,V,v[N],w[N];
int dp[N][N];int main() {cin>>n>>V;for(int i=1;i<=n;i++) cin>>v[i]>>w[i];for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]) dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);}cout<<dp[n][V]<<endl;memset(dp,0,sizeof dp);for(int j=1;j<=V;j++) dp[0][j]=-1;for(int i=1;i<=n;i++)for(int j=0;j<=V;j++){dp[i][j]=dp[i-1][j];if(j>=v[i]&&dp[i][j-v[i]]!=-1) dp[i][j]=max(dp[i][j],dp[i][j-v[i]]+w[i]);}cout<<(dp[n][V]==-1?0:dp[n][V])<<endl;return 0;
}

02.零钱兑换

题目链接:https://leetcode.cn/problems/coin-change/

给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。

计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1

你可以认为每种硬币的数量是无限的。

示例 1:

输入:coins = [1, 2, 5], amount = 11
输出:3 
解释:11 = 5 + 5 + 1

示例 2:

输入:coins = [2], amount = 3
输出:-1

示例 3:

输入:coins = [1], amount = 0
输出:0

提示:

  • 1 <= coins.length <= 12
  • 1 <= coins[i] <= 231 - 1
  • 0 <= amount <= 104

思路

  1. 状态表示:
    • dp[i][j] 表示从前 i 个硬币中挑选,总和正好等于 j,所有选法中最少的硬币个数。
  2. 状态转移方程:
    • 在完全背包问题中,每个硬币可以选无限个,因此需要分多种情况讨论:
      • 0 个第 i 个硬币:相当于去前 i - 1 个硬币中挑选,总和正好等于 j。此时最少的硬币个数为 dp[i - 1][j]
      • 1 个第 i 个硬币:相当于去前 i - 1 个硬币中挑选,总和正好等于 j - coins[i]。因为挑选了一个第 i 个硬币,此时最少的硬币个数为 dp[i][j - coins[i]] + 1
    • 综上,状态转移方程为:dp[i][j] = min(dp[i - 1][j], dp[i][j - coins[i]] + 1)
  3. 初始化:
    • 初始化第一行,将第一个位置设置为 0,因为正好能凑齐总和为 0 的硬币;其余位置设置为无穷大。
  4. 填表顺序:
    • 从上往下填表。
  5. 返回值:
    • 根据状态表示,返回 dp[n][V]。但要特判一下,因为有可能凑不到。

代码

class Solution {const int INF=0x3f3f3f3f;
public:int coinChange(vector<int>& coins, int amount) {int n=coins.size();vector<vector<int>> dp(n+1,vector<int>(amount+1));for(int j=1;j<=amount;j++) dp[0][j]=INF;for(int i=1;i<=n;i++)for(int j=0;j<=amount;j++){dp[i][j]=dp[i-1][j];if(j>=coins[i-1]) dp[i][j]=min(dp[i][j],dp[i][j-coins[i-1]]+1);}return dp[n][amount]>=INF?-1:dp[n][amount];}
};

03.零钱兑换 II

题目链接:https://leetcode.cn/problems/coin-change-ii/

给你一个整数数组 coins 表示不同面额的硬币,另给一个整数 amount 表示总金额。

请你计算并返回可以凑成总金额的硬币组合数。如果任何硬币组合都无法凑出总金额,返回 0

假设每一种面额的硬币有无限个。

题目数据保证结果符合 32 位带符号整数。

示例 1:

输入:amount = 5, coins = [1, 2, 5]
输出:4
解释:有四种方式可以凑成总金额:
5=5
5=2+2+1
5=2+1+1+1
5=1+1+1+1+1

示例 2:

输入:amount = 3, coins = [2]
输出:0
解释:只用面额 2 的硬币不能凑成总金额 3 。

示例 3:

输入:amount = 10, coins = [10] 
输出:1

提示:

  • 1 <= coins.length <= 300
  • 1 <= coins[i] <= 5000
  • coins 中的所有值 互不相同
  • 0 <= amount <= 5000

思路

  1. 状态表示:
    • dp[i][j] 表示从前 i 个硬币中挑选,总和正好等于 j,一共有多少种选法。
  2. 状态转移方程:
    • 在完全背包问题中,每个硬币可以选无限个,因此需要分多种情况讨论:
      • 0 个第 i 个硬币:相当于去前 i - 1 个硬币中挑选,总和正好等于 j。此时的选法数为 dp[i - 1][j]
      • 1 个第 i 个硬币:相当于去前 i - 1 个硬币中挑选,总和正好等于 j - coins[i]。因为挑选了一个第 i 个硬币,此时的选法数为 dp[i][j - coins[i]] + 1
    • 综上,状态转移方程为:dp[i][j] = dp[i - 1][j] + dp[i][j - coins[i]] + 1
  3. 初始化:
    • 初始化第一行,表示没有物品,总和正好为 0 的情况。只有一种情况,即 dp[0][0] = 1;其余位置都为 0 种情况。
  4. 填表顺序:
    • 从上往下填表。
  5. 返回值:
    • 根据状态表示,返回 dp[n][V]

代码

class Solution {
public:int change(int amount, vector<int>& coins) {int n=coins.size();vector<vector<int>> dp(n+1,vector<int>(amount+1));dp[0][0]=1;for(int i=1;i<=n;i++)for(int j=0;j<=amount;j++){dp[i][j]=dp[i-1][j];if(j>=coins[i-1]) dp[i][j]=dp[i][j]+dp[i][j-coins[i-1]];}return dp[n][amount];}
};

04.完全平方数

题目链接:https://leetcode.cn/problems/perfect-squares/

给你一个整数 n ,返回 和为 n 的完全平方数的最少数量

完全平方数 是一个整数,其值等于另一个整数的平方;换句话说,其值等于一个整数自乘的积。例如,14916 都是完全平方数,而 311 不是。

示例 1:

输入:n = 12
输出:3 
解释:12 = 4 + 4 + 4

示例 2:

输入:n = 13
输出:2
解释:13 = 4 + 9 

提示:

  • 1 <= n <= 104

思路

  1. 状态表示:

    • 在这个问题中,状态表示我们需要找到使得和为 n 的最少完全平方数的数量。因此,我们可以定义状态 dp[i][j],其中 i 表示使用前 i 个完全平方数,j 表示目标和为 jdp[i][j] 的值表示使用前 i 个完全平方数达到和为 j 时的最小数量。
  2. 状态转移方程:

    • 根据问题的特点,我们可以得到状态转移方程:

      dp[i][j]=min(dp[i][j],dp[i][j-i*i]+1);

      其中,i*i表示第 i 个完全平方数。

  3. 初始化:

    • 在初始化阶段,我们需要初始化第一行和第一列的值。对于第一行,因为使用零个完全平方数就能达到和为 0,所以 dp[0][0] = 0。对于其余的 dp[0][j],由于没有完全平方数可用,我们设为一个较大的值(代表不可能达到这个和)。对于第一列,因为使用任何完全平方数都可以达到和为 0,所以 dp[i][0] = 0
  4. 填表顺序:

    • 遍历顺序通常是根据状态转移方程中的依赖关系来确定的。在这里,我们可以先遍历使用的完全平方数 i,然后遍历目标和 j
  5. 返回值:

    • 返回结果是在最后一行 dp[m][n] 中,其中 m 表示完全平方数的个数,n 表示目标和。

代码

class Solution {const int INF=0x3f3f3f3f;
public:int numSquares(int n) {int m=(int)sqrt(n);vector<vector<int>> dp(m+1,vector<int>(n+1));for(int j=1;j<=n;j++) dp[0][j]=INF;for(int i=1;i<=m;i++)for(int j=0;j<=n;j++){dp[i][j]=dp[i-1][j];if(j>=i*i) dp[i][j]=min(dp[i][j],dp[i][j-i*i]+1);}return dp[m][n];}
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/719998.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

TCPDump 使用教程

每次服务器网络不通的时候&#xff0c;总会听到一个声音&#xff0c;你去抓包啊&#xff0c;那这里就来介绍下TCPDump&#xff0c;一款强大的网络分析工具&#xff0c;可以捕获网络上的数据包&#xff0c;并进行分析。这款工具在网络管理员和安全专家中非常受欢迎。 一、安装 …

防火墙:网络防御的第一道防线

目录 引言 一、安全技术与防火墙 &#xff08;一&#xff09;安全技术 &#xff08;二&#xff09;防火墙的主要功能与分类 1.防火墙的主要功能 2.防火墙的分类 二、Linux防火墙的基本认识 &#xff08;一&#xff09;Netfilter &#xff08;二&#xff09;防火墙工具…

单调队列(347. 前 K 个高频元素239. 滑动窗口最大值)

单调队列和单调栈其实差不多,就是维护一个区间单调的队列或者是栈,单调队列就是我们所说的大顶堆小顶堆, //升序队列 小顶堆 great 小到大 priority_queue <int,vector<int>,greater<int> > pri_que; //降序队列 大顶堆 less 大到小 默认 priority_qu…

【AI视野·今日NLP 自然语言处理论文速览 第八十一期】Mon, 4 Mar 2024

AI视野今日CS.NLP 自然语言处理论文速览 Mon, 4 Mar 2024 Totally 48 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computation and Language Papers Mitigating Reversal Curse via Semantic-aware Permutation Training Authors Qingyan Guo, Rui Wang, Junlia…

Fisher矩阵与自然梯度法

文章目录 Fisher矩阵及自然梯度法Fisher矩阵自然梯度法总结参考链接 Fisher矩阵及自然梯度法 自然梯度法相比传统的梯度下降法具有以下优势&#xff1a; 更好的适应性&#xff1a;自然梯度法通过引入黎曼流形上的梯度概念&#xff0c;能够更好地适应参数空间的几何结构。这使…

LCR 134. Pow(x, n)

解题思路&#xff1a; 分治 快速幂 Java中向下取整n/2即可 需要结合下图理解&#xff0c;算法就是实现的该过程 class Solution {public double myPow(double x, int n) {if(x 0.0f) return 0.0d;long b n;double res 1.0;//例如:2^-5(1/2)^5if(b < 0) {x 1 / x;b -b…

【Python】Python教师/学生信息管理系统 [简易版] (源码)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

京东商品优惠券API获取商品到手价

item_get_app-获得JD商品详情原数据 公共参数 请求地址: jd/item_get_app 名称类型必须描述keyString是调用key&#xff08;必须以GET方式拼接在URL中&#xff09;secretString是调用密钥api_nameString是API接口名称&#xff08;包括在请求地址中&#xff09;[item_search,i…

MATLAB环境下基于区域椭圆拟合的细胞分割方法

使用图像分割技术可以找到图像中的目标区域&#xff0c;目标区域可以定义为具有特定值的单个区域&#xff0c;也可以定义为具有相同值的多个区域。目前图像分割已经融入到生活中的方方面面&#xff0c;在遥感领域&#xff0c;它应用于航拍图中的地形、地貌的分割&#xff1b;在…

智慧城市的创新实践:全球案例分享

一、引言 在全球化和数字化的时代&#xff0c;智慧城市已经成为城市发展的前沿趋势。智慧城市运用先进的信息技术&#xff0c;如大数据、物联网、云计算和人工智能等&#xff0c;提升城市管理的智能化水平&#xff0c;增强公共服务效率&#xff0c;优化居民生活质量。本文将通…

第四十九回 吴学究双掌连环计 宋公明三打祝家庄-Python与HTTP服务交互

吴用请戴宗从梁山请来铁面孔目裴宣、圣手书生萧让、通臂猿侯健、玉臂匠金大坚来帮忙。又告诫扈家庄的扈成&#xff0c;打起来不要去帮祝家庄。 孙立把旗号改成“登州兵马提辖孙立”&#xff0c;来祝家庄找峦廷玉&#xff0c;被热情接待。 第三天&#xff0c;宋江派小李广花荣…

Qt+FFmpeg+opengl从零制作视频播放器-1.项目介绍

1.简介 学习音视频开发&#xff0c;首先从做一款播放器开始是比较合理的&#xff0c;每一章节&#xff0c;我都会将源码贴在最后&#xff0c;此专栏你将学习到以下内容&#xff1a; 1&#xff09;音视频的解封装、解码&#xff1b; 2&#xff09;Qtopengl如何渲染视频&#…

Docker实战——容器

目录 Docker 容器的基本概念与操作1.使用“docker create”创建容器。这里基于Nginx的镜像创建了一个容器&#xff0c;名字为mycontainer。2.使用“docker ps -a”命令查看所有的容器&#xff0c;这时的容器不一定是运行状态。3.使用 “docker start” 命令可以启动容器。4.使用…

优化zabbix对Docker API的监控

启用Zabbix Agent 2对Docker API的监控&#xff0c;通常不需要直接编辑/etc/zabbix/zabbix_agent2.d/下的文件&#xff0c;因为针对Docker容器的监控是通过内建的插件实现的。以下是大致步骤&#xff1a; 确认Agent版本与配置&#xff1a; 确保你安装的是支持Docker监控的Zabbi…

JMeter正则表达式提取器和JSON提取器基础用法,小白必会!

【面试突击班】1. 性能测试主要关注哪些指标&#xff1f; 最近在利用JMeter做接口自动化测试&#xff0c;正则表达式提取器和JSON提取器用的还挺多&#xff0c;想着分享下&#xff0c;希望对大家的接口自动化测试项目有所启发。 在 JMeter 中&#xff0c;正则表达式和 JSON 提…

探索Ubuntu命令行:常见问题与解决方案

一、引言 Ubuntu&#xff0c;作为一款流行的Linux发行版&#xff0c;其命令行界面&#xff08;CLI&#xff09;为用户提供了丰富的功能和灵活性。然而&#xff0c;对于新手来说&#xff0c;命令行可能会带来一些挑战。本文将探讨一些在使用Ubuntu命令行时可能遇到的问题及其解决…

C语言内存优化实用指南

一、引言 在C语言编程中&#xff0c;内存管理是一项至关重要的任务。有效的内存优化可以提升程序的性能&#xff0c;减少资源消耗&#xff0c;并防止可能出现的内存泄漏和溢出问题。以下是一些关于C语言内存优化的实用指南。 二、理解内存管理 在C语言中&#xff0c;程序员需…

VMware虚拟机安装Linux

1.新建虚拟机 2. 安装操作系统 等待 选择中文 点软件选择 选择下面的GNOME桌面 禁用KDUMP 点进安装位置&#xff0c;点完成就可以了 网络连接&#xff0c;右上角打开 开始安装&#xff0c;输入ROOT密码&#xff0c;创建用户 点击重启&#xff0c;等待 重启完成之后出现下面的界…

Windows10蓝牙开关按钮不见了问题??

Windows10蓝牙开关按钮不见了问题&#xff1f;&#xff1f;此类问题一般是系统更新不及时的bug&#xff0c;遗漏掉了蓝牙相关驱动插件 试过很多方法&#xff0c;直接下载一个驱动人生即可&#xff0c;主要通过官网下载 下载这个就行 打开软件自动扫描就可以了 最后查看结果

python二级常见题目

一.常见语法 jieba—第三方中文分词函数库 jieba—第三方中文分词函数库_jieba库函数-CSDN博客 Python基础——format格式化 Python基础——format格式化_python format-CSDN博客 format()方法的使用超全_format方法-CSDN博客 Python中random函数用法整理 Python中random…