MQ - 闲聊MQ一二事儿 (Kafka、RocketMQ 、Pulsar )

文章目录

  • MQ的发展史
    • 阶段一:追求解耦
    • 阶段二:追求吞吐量与一致性
    • 阶段三:追求平台化
  • MQ的通用架构
    • 主题topic、生产者producer、消费者consumer
    • 分区partition
  • MQ 存储
    • Kafka
      • Good Design ---> 磁盘顺序写盘
      • Poor Impact---> topic 数量不能过大
    • RocketMQ
      • zookeeper vs namesrv
      • 局部顺序写(kafka) 与 完全顺序写(rocketmq)
      • Rocketmq 存储结构
    • Pulsar
      • 架构图(分层+分片)
      • 服务层设计
      • 存储层设计
      • 扩容
      • 容灾
  • 小结

在这里插入图片描述


MQ的发展史

在这里插入图片描述
如上图我们可以把消息队列的发展切分成了三个大的阶段

阶段一:追求解耦

  1. 2003-2010年,计算机软件行业兴起。
  2. 系统间强耦合是程序设计的难题。
  3. ActiveMQ和RabbitMQ等消息队列出现。
  4. 消息队列致力于解决系统间耦合和异步化操作问题。
  5. 系统间解耦和异步化是消息队列最主要的功能和使用场景。

阶段二:追求吞吐量与一致性

  1. 10 -12 年期间,大数据时代实时计算需求增长,数据规模扩大,Kafka应运而生满足消息队列高吞吐量和并发需求。
  2. 随着阿里电商业务发展,Kafka在可靠性、一致性、顺序消息等方面无法满足需求。
  3. RocketMQ诞生,吸收Kafka设计理念之余,解决其痛点。
  4. RocketMQ不依赖Zookeeper,增强可靠性、一致性、顺序消息能力。
  5. 阿里将RocketMQ开源,最终成为Apache项目,满足大数据 messaging 需求。

阶段三:追求平台化

  1. 平台化的产品会取代非平台化的产品,这是行业发展趋势。
  2. 2012年后,云计算、容器化兴起,公司开始把基础技术能力平台化。
  3. 阿里云、腾讯云等云服务的出现证明了这一趋势。
  4. Pulsar诞生于此背景下,目的是解决雅虎内部重复建设、消息队列隔离不好、数据迁移难等问题。
  5. Pulsar通过提供平台化的消息队列服务来解决这些问题。
  6. 平台化是Pulsar产生的核心原因,也是解决上述问题的关键所在。

MQ的通用架构

主题topic、生产者producer、消费者consumer

用吃饭的场景生动地诠释了消息队列的几个关键概念:

  1. 饭堂的不同档口(米饭、面、麻辣香锅)对应消息队列的主题(topic)概念。
  2. 用户选择某个档口排队取餐,这个过程相当于生产者生产了一条消息到该主题的消息队列中。
  3. 档口将餐食提供给用户,则相当于消费者从消息队列中消费了一条消息。
  4. 用户排队等待相当于消息在队列中的存储等待被消费的过程。
  5. 取餐按排队顺序进行,消费也是按顺序进行的。

通过日常生活的吃饭场景,形象地解释了消息队列的工作原理,包括消息主题、生产者、消费者、消息存储和消费等核心概念。这些概念抽象起来可能较难理解,但结合具象的例子就很容易理解了


分区partition

  1. 分区是消息队列的一种架构方式,类似于食堂的多个档口。
  2. 当消息数量增长时,可以通过增加分区数进行扩容,如食堂增加档口数。
  3. 增加分区可以扩大消息队列的并行处理能力,提高吞吐量,就像增加档口可以减少等待时间。
  4. 生产者可以根据分区规则,将消息发到不同分区,就像食客可以选择人少的档口。
  5. 消费者可以从多个分区并行消费消息,提高效率。
  6. Kafka之所以能达到高吞吐量,是因为它是通过分区实现消息队列并行化和横向扩展的。

总结为:分区实现了消息队列的并行化,是提升吞吐量和实现横向扩展的关键手段。


MQ 存储

特性和性能是存储结构的外在表现,其实质是存储设计。我们需要了解每种消息传递协议的特性,以便更好地理解它们的架构设计。

我们将首先介绍 Kafka、RocketMQ 和 Pulsar 的架构特点,然后比较它们在架构上的不同之处,以及这些不同之处如何影响它们的功能特性。

Kafka

  1. Kafka 架构中,服务节点没有主从之分,主从概念是针对某个 topic 下的分区。
  2. 存储单位为分区,通过不同方式分散在各个节点,形成各种架构图。
  3. 生产者数量为 1,消费者数量为 1,分区数为 2,副本数为 3,服务节点数为 3。
  4. 图中有两块绿色图案,分别为 topic1-partition1 分区和 topic1-partition2 分区,浅绿色方块为它们的副本。
  5. 对于服务节点 1,topic1-partition1 是主节点;对于服务节点 2,topic1-partition2 是主节点。

在这里插入图片描述
消息队列的大致工作流程如下:

  1. 生产者、消费者与元数据中心建立连接,并保持心跳,获取服务的实况和路由信息。
  2. 生产者将消息发送到 topic 下的任一分区中,通过算法保证每个 topic 下的分区尽可能均匀。
  3. 信息需要落盘才可以给上游返回 ack,以保证宕机后的信息的完整性。
  4. 在信息写成功主分区后,系统会根据策略选择同步复制还是异步复制,以保证单节点故障时的信息完整性。
  5. 消费者开始工作,拉取响应的信息,并返回 ack。
  6. 消费者在获取消息时,会根据偏移量 (offset) 进行拉取,每次拉取后偏移量加 1。

Good Design —> 磁盘顺序写盘

Kafka 在底层设计上强依赖于文件系统(一个分区对应一个文件系统),本质上是基于磁盘存储的消息队列,在我们固有印象中磁盘的读写速度是非常慢的,慢的原因是因为在读写的过程中所有的进程都在抢占“磁头”这把锁,磁头在读写之前需要将其移动到合适的位置,这个“移动”极其耗费时间,这也就是磁盘慢的原因,但是如何不用移动磁头呢,顺序写盘就诞生了。

Kafka 消息存储在分区中,每个分区对应一组连续的物理空间。新消息追加到磁盘文件末尾。消费者按顺序拉取分区数据消费。Kafka 的读写是顺序的,可以高效地利用 PageCache,解决磁盘读写的性能问题。

在这里插入图片描述
这一特性非常重要,很多组件的底层存储设计都会用到这点,理解好这点对理解消息队列尤为重要。

The Pathologies of Big Data


Poor Impact—> topic 数量不能过大

kafka 的整体性能收到了 topic 数量的限制,这和底层的存储有密不可分的关系,我们上面讲过,当消息来的时候,底层数据使用追加写入的方式,顺序写盘,使得整体的写性能大大提高,但这并不能代表所有情况,当我们 topic 数量从几个变成上千个的时候,情况就有所不同了

在这里插入图片描述

  • 左图代表了,队列中从头到尾的信息为:topic1、topic1、topic1、topic2,在这种情况下,很好地运用了顺序写盘的特性,磁头不用去移动
  • 右边图的情况,队列中从头到尾的信息为:topic1、topic2、topic3、topic4,当队列中的信息变的很分散的时候,这个时候我们会发现,似乎没有办法利用磁盘的顺序写盘的特性,因为每次写完一种信息,磁头都需要进行移动

就很好理解,为什么当 topic 数量很大时,kafka 的性能会急剧下降了。

当然没有其他办法了吗,当然有。我们可以把存储换成速度更快 ssd 或者针对每一个分区都搞一块磁盘当然这都是钱! 这也是架构设计中的一种 trade off

在这里插入图片描述


RocketMQ

对比 kafka,rocketmq 有两点很大的不同:

  • 元数据管理系统,从 zookeeper 变成了轻量级的独立服务集群
  • 服务节点变为 多主多从架构

在这里插入图片描述

zookeeper vs namesrv

ookeeper 是 cp 强一致架构的一种,其内部使用 zab 算法,进行信息同步和容灾,在信息量较小的情况下,性能较好,当信息交互变多,因为同步带来的性能损耗加大,性能和吞吐量降低。如果 zookeeper 宕机,会导致整个集群的不可用,对于一些交易场景,这是不可接受的

  • 相比 Zookeeper,RocketMQ 选择了轻量级的独立服务器 NameSRV。
  • NameSRV 使用简单的 K/V 结构保存信息。
  • NameSRV 支持集群模式,每个 NameSRV 相互独立,不进行任何通信。
  • Data 都保存在内存当中,Broker 的注册过程通过循环遍历所有 NameSRV 进行注册。

在这里插入图片描述

局部顺序写(kafka) 与 完全顺序写(rocketmq)

  • Kafka 将不同分区写入对应的文件系统中,保证了优秀的水平扩容能力。
  • RocketMQ 追求极致的消息写,将所有 topic 消息存储在同一个文件中,确保消息发送时按顺序写文件,提高可用性和吞吐量。
  • RocketMQ 的设计使得其不支持删除指定 topic 功能,因为 topic 信息在磁盘上是一段非连续的区域,不像 Kafka 一个 topic 是一段连续的区域。

在这里插入图片描述

Rocketmq 存储结构

RocketMQ 的存储结构设计是为了追求极致的消息写性能,它采用了混合存储的方式,将多个 Topic 的消息实体内容都存储于一个 CommitLog 中。在 RocketMQ 的存储架构中,有三个重要的存储文件,分别是 CommitLog、ConsumeQueue 和 IndexFile。

  1. CommitLog
    CommitLog 是存储消息的主体。Producer 发送的消息都会顺序写入 commitLog 文件,所以随着写入的消息增多,文件也会随之变大。单个文件大小默认 1G,文件名长度为 20 位,左边补零,剩余为起始偏移量。例如,00000000000000000000 代表了第一个文件,起始偏移量为 0,文件大小为 1G。当第一个文件写满了,第二个文件为 00000000001073741824,起始偏移量为 1073741824,以此类推。存储路径为 HOME/store/commitLog

  2. ConsumeQueue
    ConsumeQueue(逻辑消费队列) 可以看成基于 topic 的 commitLog 的索引文件。因为 CommitLog 是按照顺序写入的,不同的 topic 消息都会混淆在一起,而 Consumer 又是按照 topic 来消费消息的,这样的话势必会去遍历 commitLog 文件来过滤 topic,这样性能肯定会非常差,所以 rocketMq 采用 ConsumeQueue 来提高消费性能。即每个 Topic 下的每个 queueId 对应一个 Consumequeue,其中存储了单条消息对应在 commitLog 文件中的物理偏移量 offset,消息大小 size,消息 Tag 的 hash 值。存储路径为 HOME/store/consumequeue/topic/queueId/fileName

  3. IndexFile
    IndexFile 提供了一种可以通过 key(topicmsgId) 或时间区间来查询消息的方法。他的存在主要是针对在客户端 (生产者和消费者) 和控制台接口提供了根据 key 查询消息的实现。为了方便用户查询具体某条消息。IndexFile 的存储结构可以认为是一个 hashmap。存储路径为 HOME/store/index/. HOME/store/index/fileName 文件名 fileName 是以创建时的时间戳命名的。

在这里插入图片描述
我们在想想 kafka 是怎么做的,对的,kafka 并没有类似的烦恼,因为所有信息都是连续的

总结起来,RocketMQ 的存储结构设计非常复杂,但它通过合理的设计实现了高效的消息写入和读取性能。同时,RocketMQ 也支持多种存储方式,如本地存储、分布式存储和云存储等,可以满足不同场景下的需求。

在这里插入图片描述


Pulsar

架构图(分层+分片)

在这里插入图片描述

pulsar 相比与 kafka 与 rocketmq 最大的特点则是使用了分层和分片的架构,回想一下 kafka 与 rocketmq,一个服务节点即是计算节点也是服务节点,节点有状态使得平台化、容器化困难、数据迁移、数据扩缩容等运维工作都变的复杂且困难。

  • 分层:Pulsar 分离出了 Broker(服务层)和 Bookie(存储层)架构,Broker 为无状态服务,用于发布和消费消息,而 BookKeeper 专注于存储。

  • 分片 : 这种将存储从消息服务中抽离出来,使用更细粒度的分片(Segment)替代粗粒度的分区(Partition),为 Pulsar 提供了更高的可用性,更灵活的扩展能力


服务层设计

Broker 集群在 Pulsar 中形成无状态服务层。服务层是“无状态的”,所有的数据信息都存储在了 BookKeeper 上,所有的元信息都存储在了 zookeeper 上,这样使得一个 broker 节点没有任何的负担,这里的负担有几层含义:

  • 容器化没负担,broker 节点不用考虑任何数据状态带来的麻烦。
  • 扩容、缩容没负担,当请求量级突增或者降低的同时,可以随时的添加节点或者减少节点以动态的调整资源,使得整体在一种“合适”的状态。
  • 故障转移没负担,当一个节点宕机、服务不可用时,可以通快速地转移所负责的 topic 信息到别的基节点上,可以很好做到故障对外无感知。
    在这里插入图片描述

存储层设计

pulsar 使用了类似于 raft 的存储方案,数据会并发的写入多个存储节点上,下图为四存储节点、三副本架构。
在这里插入图片描述

broker2 节点当前需要写入 segment1 到 segment4 数据,流程为: segment1 并发写入 b1、b2、b3 数据节点、segment2 并发写入 b2、b3、b4 数据节点、segment3 并发写入 b3、b4、b1 数据节点、segment4 并发写入 b1、b2、b4 数据节点。这种写入方式称为条带化的写入方式

这种方式潜在的决定了数据的分布方式、通过路由算法,可以很快的找到对应数据的位置信息,在数据迁移与恢复中起到重要的作用。


扩容

当存储节点资源不足的时候,常规的运维操作就是动态扩容,相比 kafka 与 rocketmq、pulsar 不用考虑原数据的"人为"搬移工作,而是动态新增一个或者多个节点,broker 在写入数据时通过路有算法优先写入资源充足的节点,使得整体的资源利用力达到一个平衡的状态,如图所示。
在这里插入图片描述

以下是一张 kafka 分区和 pulsar 分片的一张对比图,左图是 kafka 的数据存储特点,因为数据和分区的强绑定,导致了第三艘小船没有任何的数据,而相比 pulsar,数据不和任何存储节点绑定,而是实时的动态写入,从数据分布和资源利用来说,要做的更好。

在这里插入图片描述


容灾

当 bookie4 存储节点宕机不可用时,如何恢复节点数据?这里只需要增加新的存储节点,并且拷贝 bookie2 与 bookie3 上的数据即可,这个过程对外是无感知的,实现了平滑切换,如图所示

在这里插入图片描述


小结

每种设计都有其特定的优势和局限,适应不同场景和需求。因此,在选用产品时,需要根据实际业务场景和需求,权衡各种设计的优缺点,作出最合适的选择。这种选择过程正是体现了设计与需求之间的平衡。所以,针对不同场景选择合适的产品是非常关键的。

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/7193.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

LabVIEW可重入VI,VI模板和动态VI之间的差异

LabVIEW可重入VI,VI模板和动态VI之间的差异 应该在何时使用可重入VI、模板VI和动态调用VI?这三种类型之间有什么区别? 可重入VI 当想要同时运行同一VI的多个实例时,将使用可重入VI。当VI不可重入时,VI只有一个数据空…

lama cleaner

这里写自定义目录标题 安装参数包含的额外plugins 安装 conda create --name lamacleaner python3.10 pip install -r requirements.txt pip install gfpgan pip install realesrgan pip install rembg pip install .如果安装本package报错,可以尝试改&#xff1…

后端(四):博客系统项目

咱们在这里实现的是后端项目,前端代码就提一提,不全做重点介绍,在开始讲解这个博客系统项目之前,我们先看看这个项目的前端界面: 登录界面: 个人主页: 博客详情页: 写博客页&#x…

常用API学习07(Java)

Date 在jdk1.8之前,java中的日期和时间是一类的,从1.8之后对日期和时间体系重新做了规划,划分出一个新的包 - java.time包,这个包中包含了日期、时间、时区、日历、单位。 Date,是java中最老的日期和时间类,后续退出…

Arcgis之 KML/KMZ文件转shp

一般我们在Goole Earth上勾画的区域导出后都为KML或者KMZ格式的,但无法在arcgis等软件上直接应用,故需进行一定的转换 1.打开ArcMap,选择ArcToolbox->Conversion Tools->From KML->KML To Layer 得到如下结果(由于本KML…

pytest自动化测试框架tep环境变量、fixtures、用例三者之间的关系

tep是一款测试工具,在pytest测试框架基础上集成了第三方包,提供项目脚手架,帮助以写Python代码方式,快速实现自动化项目落地。 在tep项目中,自动化测试用例都是放到tests目录下的,每个.py文件相互独立&…

自动驾驶分级和技术架构

标题SAE 和 NHTSA自动驾驶分级 当前全球汽车行业中两个最权威的分级系统由美国国家公路交通安全管理局(NHTSA)和国际自动化工程师协会(SAE)提出。2013年,NHTSA将驾驶自动化的描述分为5个层级。2014年1月,SAE制定J3016自动驾驶分级…

Mybatis基础模块-日志管理

文章目录 1. 适配器模式2. Log2.1 默认实现StdOutImpl2.2 Log4jImpl 3. LogFactory4. 解析配置和应用4.1 settings配置4.2 解析 5. jdbc日志5. 1 类图5.2 BaseJdbcLogger5.3 ConnectionLogger5.4 ConnectionLogger的具体应用 1. 适配器模式 适配器使接口不兼容的对象可以相互合…

IDEA常用高效开发工具—screw一键生成数据库文档(仅需三步)

1.配置 引入screw核心... <!-- screw核心 --> <dependency><groupId>cn.smallbun.screw</groupId><artifactId>screw-core</artifactId><version>1.0.3</version> </dependency><!-- HikariCP --> <dependency…

VuePress在生产环境跳转子页报错 Failed to execute ‘appendChild‘ on ‘Node‘

记录一个使用VuePress时遇到的问题 使用VuePress做了一个文档网页&#xff0c;在开发环境的时候一切正常&#xff0c;但是发布到生产环境后&#xff0c;直接跳转二级页面会报错Failed to execute appendChild on Node 比如主页是http://sun/docs/.vuepress/dist/index.html#/…

【C语言项目】三子棋

文章目录 项目思路一、分文件进行创建二、进入游戏前的目录2.1 目录的功能&#xff1a;2.2 目录界面&#xff1a;2.3 选择进入或退出游戏2.4 多次重玩功能 三、画出棋盘3.1 写出棋子3.2 初始化棋盘3.2 画出棋盘的框架3.3 代码实现 四、玩家落子4.1 落子逻辑4.2具体情况分类讨论…

抖斗音直播间评论引流助手,支持直播间喊话+视频评论区喊话=到指定直播间引流精准粉丝【永久脚本+详细教程】

如果你觉得直播间发言手动太麻烦了&#xff0c;或许这个自动工具能帮到你&#xff01; 1.开始运行前&#xff0c;需要手动去打开打开直播间或者视频评论区&#xff0c;再运行脚本。 2.脚本就是模拟人工操作&#xff0c;在相应的APP里进行评论&#xff0c;无突破APP限制功能。…

【Kubernetes运维篇】ingress-nginx实现业务灰度发布详解

文章目录 一、理论&#xff1a;实现灰度发布的几种场景1、场景一&#xff1a;将新版本灰度给部分用户2、场景二&#xff1a;按照比例流程给新版本3、实现灰度发布字段解释 二、实践&#xff1a;1、实验前提环境2、基于Request Header(请求头)进行流量分割3、基于Cookie进行流量…

93.qt qml-自定义Table优化(新增:水平拖拽/缩放自适应/选择使能/自定义委托)

之前我们更新了90.qt qml-Table表格组件(支持表头表尾固定/自定义颜色/自定义操作按钮/排序)_qml 表格_诺谦的博客-CSDN博客 但是一直没出源码,是因为该demo还存在问题,那就是表头表尾固定下,如果是半透明状态下,会看到表头表尾固定后的内容,所以只能重构代码,不能使用重…

Vue3组合式API+TypeScript写法入门

文章目录 前言1.reactive2.ref3.props4.computed5.emit6.watch总结 前言 参考Vue3官网. 本篇以组合式API为例, 但不包含setup语法糖式写法. 原本打算结合class-component, Vue3不推荐就不用了: OverView|Vue Class Component. 而且是不再推荐基于类的组件写法, 推荐单文件组件…

Android App 持续集成性能测试:启动流量

目录 前言&#xff1a; get app UID 获取流量数据 获得启动流量数据 总结 前言&#xff1a; Jenkins 是一种开源的持续集成工具&#xff0c;可以帮助我们更加方便地进行软件开发和测试工作。通过 API 远程管理 Jenkins 可以帮助我们更加方便地进行 Jenkins 的配置和管理工…

react实现路由跳转动画

下载插件 npm i react-transition-group 配置路由 import { createBrowserRouter as ReactRouter,Navigate } from "react-router-dom";import App from ../App.js import Login from "../view/login.js"; import Home from "../home.js"; co…

了解 3DS MAX 3D摄像机跟踪设置:第 4 部分

推荐&#xff1a; NSDT场景编辑器助你快速搭建可二次开发的3D应用场景 1. 项目设置 步骤 1 打开“后效”。 打开后效果 步骤 2 转到合成>新合成以创建新合成。 将“宽度”和“高度”值分别设置为 1280 和 720。将帧速率设置为 25&#xff0c;将持续时间设置为 12 秒。单…

Flask 文件上传,删除上传的文件

目录结构 app.py from flask import Flask, request, render_template, redirect, url_for import osapp Flask(__name__) BASE_DIR os.getcwd() UPLOAD_FOLDER os.path.join(BASE_DIR, testfile)app.route(/) def home():files os.listdir(UPLOAD_FOLDER)return render_t…

欧盟新规,燃油噩梦?2025年起,高速公路每60公里设立一处快充站

根据外媒The Verge报道&#xff0c;欧洲电动汽车用户将获得更多便捷的待遇&#xff0c;同时还能减少有害温室气体排放&#xff0c;这得益于欧盟理事会最新通过的法规。 根据欧盟的法规要求&#xff0c;自2025年起&#xff0c;TEN-T高速公路系统在欧洲将需要每隔60公里设立一座高…