黑马点评-商户查询业务

缓存原理

本文的业务就是redis的经典应用,标准的操作方式就是查询数据库之前先查询缓存,如果缓存数据存在,则直接从缓存中返回,如果缓存数据不存在,再查询数据库,然后将数据存入redis。

缓存更新策略

根据id查询店铺时,如果缓存未命中,则查询数据库,将数据库结果写入缓存,并设置超时时间

根据id修改店铺时,先修改数据库,再删除缓存

/*** 根据id查询商铺数据(查询时,重建缓存)** @param id* @return*/@Overridepublic Result queryById(Long id) {String key = CACHE_SHOP_KEY + id;// 1、从Redis中查询店铺数据String shopJson = stringRedisTemplate.opsForValue().get(key);Shop shop = null;// 2、判断缓存是否命中if (StrUtil.isNotBlank(shopJson)) {// 2.1 缓存命中,直接返回店铺数据shop = JSONUtil.toBean(shopJson, Shop.class);return Result.ok(shop);}// 2.2 缓存未命中,从数据库中查询店铺数据shop = this.getById(id);// 4、判断数据库是否存在店铺数据if (Objects.isNull(shop)) {// 4.1 数据库中不存在,返回失败信息return Result.fail("店铺不存在");}// 4.2 数据库中存在,重建缓存,并返回店铺数据stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(shop), CACHE_SHOP_TTL, TimeUnit.MINUTES);return Result.ok(shop);}/*** 更新商铺数据(更新时,更新数据库,删除缓存)** @param shop* @return*/@Transactional@Overridepublic Result updateShop(Shop shop) {// 参数校验, 略// 1、更新数据库中的店铺数据boolean f = this.updateById(shop);if (!f){// 缓存更新失败,抛出异常,事务回滚throw new RuntimeException("数据库更新失败");}// 2、删除缓存f = stringRedisTemplate.delete(CACHE_SHOP_KEY + shop.getId());if (!f){// 缓存删除失败,抛出异常,事务回滚throw new RuntimeException("缓存删除失败");}return Result.ok();}

缓存穿透

缓存穿透 :缓存穿透是指客户端请求的数据在缓存中和数据库中都不存在,这样缓存永远不会生效,这些请求都会打到数据库。

简单的解决方案是哪怕这个数据在数据库中也不存在,我们也把这个数据存入到redis中去,下次用户过来访问这个不存在的数据,那么在redis中也能找到这个数据就不会进入到数据库了。

布隆过滤器采用的是哈希思想来解决这个问题,通过一个庞大的二进制数组判断当前这个要查询的这个数据是否存在,如果布隆过滤器判断存在,则放行,这个请求会去访问redis,哪怕此时redis中的数据过期了,但是数据库中一定存在这个数据,在数据库中查询出来这个数据后,再将其放入到redis中,假设布隆过滤器判断这个数据不存在,则直接返回。

这种方式优点在于节约内存空间,存在误判,误判原因在于:布隆过滤器走的是哈希思想,只要哈希思想,就可能存在哈希冲突。

商品查询的缓存穿透解决

这里采用上述第一种方法:

在原来的逻辑中,我们如果发现这个数据在mysql中不存在,直接就返回404了,这样是会存在缓存穿透问题的

现在的逻辑中:如果这个数据不存在,我们不会返回404 ,还是会把这个数据写入到Redis中,并且将value设置为空,欧当再次发起查询时,我们如果发现命中之后,判断这个value是否是null,如果是null,则是之前写入的数据,证明是缓存穿透数据,如果不是,则直接返回数据。

缓存雪崩

缓存雪崩是指在同一时段大量的缓存key同时失效或者Redis服务宕机,导致大量请求到达数据库,带来巨大压力。

缓存击穿问题也叫热点Key问题,就是一个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击。

具体场景中,假设线程1在查询缓存之后,本来应该去查询数据库,然后把这个数据重新加载到缓存的,此时只要线程1走完这个逻辑,其他线程就都能从缓存中加载这些数据了,但是假设在线程1没有走完的时候,后续的线程2,线程3,线程4同时过来访问当前这个方法, 那么这些线程都不能从缓存中查询到数据,那么他们就会同一时刻来访问查询缓存,都没查到,接着同一时间去访问数据库,同时的去执行数据库代码,对数据库访问压力过大

因为锁能实现互斥性。假设线程过来,只能一个人一个人的来访问数据库,从而避免对于数据库访问压力过大,但这也会影响查询的性能,因为此时会让查询的性能从并行变成了串行,我们可以采用tryLock方法 + double check来解决这样的问题。

假设现在线程1过来访问,他查询缓存没有命中,但是此时他获得到了锁的资源,那么线程1就会一个人去执行逻辑,假设现在线程2过来,线程2在执行过程中,并没有获得到锁,那么线程2就可以进行到休眠,直到线程1把锁释放后,线程2获得到锁,然后再来执行逻辑,此时就能够从缓存中拿到数据了。

我们之所以会出现这个缓存击穿问题,主要原因是在于我们对key设置了过期时间,假设我们不设置过期时间,其实就不会有缓存击穿的问题,但是不设置过期时间,这样数据不就一直占用内存了,我们可以采用逻辑过期方案。

我们把过期时间设置在 redis的value中,注意:这个过期时间并不会直接作用于redis,而是我们后续通过逻辑去处理。假设线程1去查询缓存,然后从value中判断出来当前的数据已经过期了,此时线程1去获得互斥锁,那么其他线程会进行阻塞,获得了锁的线程他会开启一个 线程去进行 以前的重构数据的逻辑,直到新开的线程完成这个逻辑后,才释放锁, 而线程1直接进行返回,假设现在线程3过来访问,由于线程线程2持有着锁,所以线程3无法获得锁,线程3也直接返回数据,只有等到新开的线程2把重建数据构建完后,其他线程才能走返回正确的数据。

商品查询的缓存雪崩解决

相较于原来从缓存中查询不到数据后直接查询数据库而言,现在的方案是进行查询之后,如果从缓存没有查询到数据,则进行互斥锁的获取,获取互斥锁后,判断是否获得到了锁,如果没有获得到,则休眠,过一会再进行尝试,直到获取到锁为止,才能进行查询。如果获取到了锁的线程,再去进行查询,查询后将数据写入redis,再释放锁,返回数据,利用互斥锁就能保证只有一个线程去执行操作数据库的逻辑,防止缓存击穿。

public Shop queryWithMutex(Long id)  {String key = CACHE_SHOP_KEY + id;// 1、从redis中查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get("key");// 2、判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 存在,直接返回return JSONUtil.toBean(shopJson, Shop.class);}//判断命中的值是否是空值if (shopJson != null) {//返回一个错误信息return null;}// 4.实现缓存重构//4.1 获取互斥锁String lockKey = "lock:shop:" + id;Shop shop = null;try {boolean isLock = tryLock(lockKey);// 4.2 判断否获取成功if(!isLock){//4.3 失败,则休眠重试Thread.sleep(50);return queryWithMutex(id);}//4.4 成功,根据id查询数据库shop = getById(id);// 5.不存在,返回错误if(shop == null){//将空值写入redisstringRedisTemplate.opsForValue().set(key,"",CACHE_NULL_TTL,TimeUnit.MINUTES);//返回错误信息return null;}//6.写入redisstringRedisTemplate.opsForValue().set(key,JSONUtil.toJsonStr(shop),CACHE_NULL_TTL,TimeUnit.MINUTES);}catch (Exception e){throw new RuntimeException(e);}finally {//7.释放互斥锁unlock(lockKey);}return shop;}

当用户开始查询redis时,判断是否命中,如果没有命中则直接返回空数据,不查询数据库,而一旦命中后,将value取出,判断value中的过期时间是否满足,如果没有过期,则直接返回redis中的数据,如果过期,则在开启独立线程后直接返回之前的数据,独立线程去重构数据,重构完成后释放互斥锁。

private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);
public Shop queryWithLogicalExpire( Long id ) {String key = CACHE_SHOP_KEY + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);Shop shop = JSONUtil.toBean((JSONObject) redisData.getData(), Shop.class);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return shop;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){CACHE_REBUILD_EXECUTOR.submit( ()->{try{//重建缓存this.saveShop2Redis(id,20L);}catch (Exception e){throw new RuntimeException(e);}finally {unlock(lockKey);}});}// 6.4.返回过期的商铺信息return shop;
}

包装处缓存类

基于上面两种问题,可以包装下原生的StringRedisTemplate:

@Component
public class CacheClient {private final StringRedisTemplate stringRedisTemplate;private static final ExecutorService CACHE_REBUILD_EXECUTOR = Executors.newFixedThreadPool(10);public CacheClient(StringRedisTemplate stringRedisTemplate) {this.stringRedisTemplate = stringRedisTemplate;}public void set(String key, Object value, Long time, TimeUnit unit) {stringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(value), time, unit);}public void setWithLogicalExpire(String key, Object value, Long time, TimeUnit unit) {// 设置逻辑过期RedisData redisData = new RedisData();redisData.setData(value);redisData.setExpireTime(LocalDateTime.now().plusSeconds(unit.toSeconds(time)));// 写入RedisstringRedisTemplate.opsForValue().set(key, JSONUtil.toJsonStr(redisData));}public <R,ID> R queryWithPassThrough(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit){String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(json)) {// 3.存在,直接返回return JSONUtil.toBean(json, type);}// 判断命中的是否是空值if (json != null) {// 返回一个错误信息return null;}// 4.不存在,根据id查询数据库R r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);return r;}public <R, ID> R queryWithLogicalExpire(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String json = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isBlank(json)) {// 3.存在,直接返回return null;}// 4.命中,需要先把json反序列化为对象RedisData redisData = JSONUtil.toBean(json, RedisData.class);R r = JSONUtil.toBean((JSONObject) redisData.getData(), type);LocalDateTime expireTime = redisData.getExpireTime();// 5.判断是否过期if(expireTime.isAfter(LocalDateTime.now())) {// 5.1.未过期,直接返回店铺信息return r;}// 5.2.已过期,需要缓存重建// 6.缓存重建// 6.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;boolean isLock = tryLock(lockKey);// 6.2.判断是否获取锁成功if (isLock){// 6.3.成功,开启独立线程,实现缓存重建CACHE_REBUILD_EXECUTOR.submit(() -> {try {// 查询数据库R newR = dbFallback.apply(id);// 重建缓存this.setWithLogicalExpire(key, newR, time, unit);} catch (Exception e) {throw new RuntimeException(e);}finally {// 释放锁unlock(lockKey);}});}// 6.4.返回过期的商铺信息return r;}public <R, ID> R queryWithMutex(String keyPrefix, ID id, Class<R> type, Function<ID, R> dbFallback, Long time, TimeUnit unit) {String key = keyPrefix + id;// 1.从redis查询商铺缓存String shopJson = stringRedisTemplate.opsForValue().get(key);// 2.判断是否存在if (StrUtil.isNotBlank(shopJson)) {// 3.存在,直接返回return JSONUtil.toBean(shopJson, type);}// 判断命中的是否是空值if (shopJson != null) {// 返回一个错误信息return null;}// 4.实现缓存重建// 4.1.获取互斥锁String lockKey = LOCK_SHOP_KEY + id;R r = null;try {boolean isLock = tryLock(lockKey);// 4.2.判断是否获取成功if (!isLock) {// 4.3.获取锁失败,休眠并重试Thread.sleep(50);return queryWithMutex(keyPrefix, id, type, dbFallback, time, unit);}// 4.4.获取锁成功,根据id查询数据库r = dbFallback.apply(id);// 5.不存在,返回错误if (r == null) {// 将空值写入redisstringRedisTemplate.opsForValue().set(key, "", CACHE_NULL_TTL, TimeUnit.MINUTES);// 返回错误信息return null;}// 6.存在,写入redisthis.set(key, r, time, unit);} catch (InterruptedException e) {throw new RuntimeException(e);}finally {// 7.释放锁unlock(lockKey);}// 8.返回return r;}private boolean tryLock(String key) {Boolean flag = stringRedisTemplate.opsForValue().setIfAbsent(key, "1", 10, TimeUnit.SECONDS);return BooleanUtil.isTrue(flag);}private void unlock(String key) {stringRedisTemplate.delete(key);}
}

总结

这一部分主要在查询商户的场景下分析了缓存的更新、穿透和雪崩的问题,最后给出一个实际场景中的实用类

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717687.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Spring重点记录

文章目录 1.Spring的组成2.Spring优点3.IOC理论推导4.IOC本质5.IOC实现&#xff1a;xml或者注解或者自动装配&#xff08;零配置&#xff09;。6.hellospring6.1beans.xml的结构为&#xff1a;6.2.Spring容器6.3对象的创建和控制反转 7.IOC创建对象方式7.1以有参构造的方式创建…

【OneAPI】猫狗类别检测API

OneAPI新接口发布&#xff1a;猫狗类别检测 45种狗狗类别和15种猫猫类别检测。 API地址&#xff1a;POST https://oneapi.coderbox.cn/openapi/api/detect/dogcat 请求参数&#xff08;body&#xff09; 参数名类型必填含义说明imageUrlstring是图片地址网络图片地址&#…

Vue路由(黑马程序员)

路由介绍 将资代码/vue-project(路由)/vue-project/src/views/tlias/DeptView.vue拷贝到我们当前EmpView.vue同级&#xff0c;其结构如下&#xff1a; 此时我们希望&#xff0c;实现点击侧边栏的部门管理&#xff0c;显示部门管理的信息&#xff0c;点击员工管理&#xff0c;显…

【周总结平淡但不平凡的周末】

上周总结 根据系统生产环境的日志文件&#xff0c;写了个脚本统计最近使用我们系统的用户的手机型号以及系统&#xff0c;帮助聚焦主要测试的机型&#xff0c;以及系统类型 依然是根据时区不同对项目进行改造&#xff0c;还有一个开发好的接口需要下周联调 2024/3/3 晴…

QT Mingw32/64编译ffmpeg源码生成32/64bit库以及测试

文章目录 前言下载msys2ysamFFmpeg 搭建编译环境安装msys2安装QT Mingw编译器到msys环境中安装ysam测试 编译FFmpeg测试 前言 FFmpeg不像VLC有支持QT的库文件&#xff0c;它仅提供源码&#xff0c;需要使用者自行编译成对应的库&#xff0c;当使用QTFFmpeg实现播放视频以及视频…

连接 mongodb集群的集中方式

mongodb 连接到复制集 mongodb://node1,node2,node3.../database?[options]mongodb 连接到分片集 mongodb://mongos1,mongos2,mongos3.../database?[options]使用 mongosrv 通过域名解析得到所有的 mongos 或 节点的地址, 而不是把这些写在连接字符串中. mongodbsrv://se…

经典的算法面试题(1)

题目&#xff1a; 给定一个整数数组 nums&#xff0c;编写一个算法将所有的0移到数组的末尾&#xff0c;同时保持非零元素的相对顺序。 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 注意&#xff1a;必须在原数组上操作&#xff0c;不能拷贝额外的数组。尽量减少操作次数。 这…

数据处理——一维数组转列向量(分割时间序列为数据块时的问题)

记录在处理数据时被磕绊了一下的一个处理细节。 1.想要达到的要求 在某次滑动窗口取样时间序列数据时&#xff0c;我得到如下一个以一维数组为元素的列表&#xff1a; 对于如上输出列表中的每个一维数组&#xff0c;我希望将其转换为下图中的形式&#xff0c;简单说就是希望他…

【详识JAVA语言】面向对象程序三大特性之三:多态

多态 多态的概念 多态的概念&#xff1a;通俗来说&#xff0c;就是多种形态&#xff0c;具体点就是去完成某个行为&#xff0c;当不同的对象去完成时会产生出不同的状态。 多态实现条件 在java中要实现多态&#xff0c;必须要满足如下几个条件&#xff0c;缺一不可&#xf…

循环队列与循环双端队列

文章目录 前言循环队列循环双端队列 前言 1、学习循环队列和循环双端队列能加深我们对队列的理解&#xff0c;提高我们的编程能力。 2、本文循环队列使用的是数组&#xff0c;循环双端队列用的是双向链表 3、题目连接&#xff1a;设计循环队列 &#xff0c;设计循环双端队列。 …

【机器学习】有监督学习算法之:支持向量机

支持向量机 1、引言2、决策树2.1 定义2.2 原理2.3 实现方式2.4 算法公式2.5 代码示例 3、总结 1、引言 小屌丝&#xff1a;鱼哥&#xff0c;泡澡啊。 小鱼&#xff1a;不去 小屌丝&#xff1a;… 此话当真&#xff1f; 小鱼&#xff1a;此话不假 小屌丝&#xff1a;到底去还是…

什么是支持向量机(Support vector machine)和其原理

作为机器学习的基础算法&#xff0c;SVM被反复提及&#xff0c;西瓜书、wiki都能查到详细介绍&#xff0c;但是总是觉得还差那么点&#xff0c;于是决定自己总结一下。 一、什么是SVM&#xff1f; 1、解决什么问题&#xff1f; SVM&#xff0c;最原始的版本是用于最简单的线…

总结 HashTable, HashMap, ConcurrentHashMap 之间的区别

1.多线程环境使用哈希表 HashMap 不行,线程不安全 更靠谱的,Hashtable,在关键方法上加了synchronized 后来标准库又引入了一个更好的解决方案;ConcurrentHashMap 2.HashMap 首先HashMap本身线程不安全其次HashMap的key值可以为空&#xff08;当key为空时&#xff0c;哈希会…

【Java数据结构】——五道算法题让你灵活运用Map和Set

目录 一.只出现一次的数字 二.宝石与石头 三.旧键盘 四.给定一个数组&#xff0c;统计每个元素出现的次数 五.前K个高频单词 一.只出现一次的数字 136. 只出现一次的数字 - 力扣&#xff08;LeetCode&#xff09; 算法原理&#xff1a;我们将nums中每个元素都存入到set中…

ASUS华硕天选5笔记本电脑FX607JV原装出厂Win11系统下载

ASUS TUF Gaming F16 FX607JV天选五原厂Windows11系统 适用型号&#xff1a; FX607JU、FX607JI、FX607JV、 FX607JIR、FX607JVR、FX607JUR 下载链接&#xff1a;https://pan.baidu.com/s/1l963wqxT0q1Idr98ACzynQ?pwd0d46 提取码&#xff1a;0d46 原厂系统自带所有驱动、…

python自动化学习--3.8python操作EXCEL文件python日志收集处理

1、Excel文件处理 安装 openpxl 第三方库 openpxl 模块三大组件: 1、工作簿 &#xff08;包含多个sheet工作表&#xff09; 2、工作表 &#xff08;某个数据包含在某个工作表&#xff09; 3、单元格 1、创建excel工作簿 import openpyxl"""Excel表格的创建…

GotoXy控制台光标的位置更新

光标控制解释 控制台的光标更新方法, 用于控制数据输出位置 void gotoXY(int x, int y)//新函数&#xff1a;更新光标 {COORD c;c.X x;c.Y y;SetConsoleCursorPosition(GetStdHandle(STD_OUTPUT_HANDLE), c); }代码解释 这段代码定义了一个名为 gotoXY 的函数&#xff0c;…

【Spring Boot】实现全局异常处理

1.定义基础异常接口类 /*** description: 服务接口类* author: MrVK* date: 2021/4/19 21:39*/ public interface BaseErrorInfoInterface {/*** 错误码* return*/String getResultCode();/*** 错误描述* return*/String getResultMsg(); } 2.定义错误处理枚举类 /*** desc…

小伙伴询问AI该怎么学习?本人的一点总结,以思维导图呈现

如有需要思维导图的在后台请留邮箱&#xff0c;相关知识结构目录 部分导图

nn.Linear() 使用提醒

原本以为它是和nn.Conv2d()一样&#xff0c;就看第二个维度的数值&#xff0c;今天才知道&#xff0c;它是只看最后一个维度的数值&#xff01;&#xff01;&#xff01; 例子1 Descripttion: Result: Author: Philo Date: 2024-02-27 14:33:50 LastEditors: Philo LastEditT…