A Brief Introduction of the Tqdm Module in Python

DateAuthorVersionNote
2024.02.28Dog TaoV1.0Release the note.

文章目录

  • A Brief Introduction of the Tqdm Module in Python
    • Introduction
      • Key Features
      • Installation
    • Usage Examples
      • Basic Usage
      • Advanced Usage

A Brief Introduction of the Tqdm Module in Python

Introduction

Tqdm is a versatile Python library that provides a fast, extensible progress bar for loops and other iterable processes. The name tqdm is derived from the Arabic word “taqaddum” (تقدّم), meaning “progress,” and is pronounced as “ta-qe-dum.” Its simplicity and efficiency have made it a go-to choice for adding progress indicators to Python code, especially in data processing, file I/O, and long-running computations.

Key Features

  • Easy to Use: Tqdm can be added to your loops with minimal code changes, instantly providing visual feedback on the progress.
  • Highly Customizable: While simple to implement with default settings, tqdm also offers a wide range of customization options, including custom messages, progress bar formatting, and manual control over the progress updates.
  • Lightweight with Minimal Dependencies: It is designed to be lightweight and requires no heavy dependencies, making it suitable for various projects.
  • Versatile: Works with loops, iterable objects, and can even be used to track progress in pandas operations with tqdm.pandas().

Installation

  • Using pip

To install tqdm using pip, open your terminal (or command prompt/PowerShell in Windows) and run the following command:

pip install tqdm

If you are working in a virtual environment (which is recommended to avoid conflicts between different projects), make sure it is activated before running the pip install command.

  • Using conda

To install tqdm using conda, you should have Anaconda or Miniconda installed on your system. Open your Anaconda Prompt (or terminal in Linux/macOS) and run the following command:

conda install -c conda-forge tqdm

Using the -c conda-forge flag specifies that conda should install tqdm from the conda-forge channel, which is a community-maintained collection of conda packages.

Usage Examples

Basic Usage

The most common use of tqdm is to wrap it around any iterable in a for loop.

from tqdm import tqdm
import timefor i in tqdm(range(1000)):# Simulated tasktime.sleep(0.001)

The output example:

在这里插入图片描述

Advanced Usage

  • Customization: You can customize the progress bar with various parameters such as desc (description), total, leave, ncols (width), unit, and more.
for i in tqdm(range(100), desc="Loading", ascii=False, ncols=75):time.sleep(0.01)
  • Manual Updates: For tasks that don’t fit neatly into a loop, tqdm can be manually updated.
pbar = tqdm(total=100)
for i in range(10):time.sleep(0.1)pbar.update(10)  # Manually update the progress bar by 10
pbar.close()

The output example:

在这里插入图片描述

  • Integration with Pandas: Tqdm can be integrated with Pandas operations using tqdm.pandas(). This is particularly useful for applying functions to DataFrame columns or rows and visualizing the progress.
import pandas as pd
from tqdm import tqdm
tqdm.pandas()df = pd.DataFrame({'x': range(10000)})
df['y'] = df['x'].progress_apply(lambda x: x**2)

The output example:

在这里插入图片描述

  • Working with Concurrent Futures: Tqdm can also be used with concurrent programming modules like concurrent.futures for tracking the progress of asynchronous tasks.
from concurrent.futures import ThreadPoolExecutor, as_completedwith ThreadPoolExecutor(max_workers=5) as executor:futures = [executor.submit(time.sleep, 0.1) for _ in range(100)]for f in tqdm(as_completed(futures), total=len(futures)):pass

The output example:

在这里插入图片描述

Tqdm’s simplicity, combined with its powerful features, makes it an invaluable tool for enhancing the user experience in command-line applications and Jupyter notebooks by providing clear and customizable progress indications.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/717234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

力扣hot100:42.接雨水

什么时候能用双指针? (1)对撞指针: ①两数和问题中可以使用双指针,先将两数和升序排序,可以发现规律,如果当前两数和大于target,则右指针向左走。 ②接雨水问题中,左边最…

【算法集训】基础算法:枚举

一、基本理解 枚举的概念就是把满足题目条件的所有情况都列举出来,然后一一判定,找到最优解的过程。 枚举虽然看起来麻烦,但是有时效率上比排序高,也是一个不错的方法、 二、最值问题 1、两个数的最值问题 两个数的最小值&…

Vscode安装,ssh插件与配置

原因 发现很多新人在练习linux,可是只有windows机的时候,一般都是下载虚拟机,然后在虚拟机上安装ubuntu等linux平台。每次需要在linux中写代码,就打开ubuntu,然后在终端上用vim写代码,或者先编辑代码文本&…

css实现上下左右居中

css实现子盒子在父级盒子中上下左右居中 几种常用的上下左右居中方式 HTML代码部分 <div class"box"><img src"./img/77.jpeg" alt"" class"img"> </div>css部分 方式一 利用子绝父相和margin:auto实现 <sty…

内存管理 -----分段分页

分段 分段&#xff1a;程序的分段地址空间&#xff0c;分段寻址方案 两个问题 分段 &#xff1a;是更好分离和共享 左边是有序的逻辑地址&#xff0c;右边是无序的物理地址&#xff0c;然后需要有一种映射的关系&#xff08;段关联机制&#xff09; 各个程序的分配相应的地址…

Gin入门指南:从零开始快速掌握Go Web框架Gin

官网:https://gin-gonic.com/ GitHub:https://github.com/gin-gonic 了解 Gin Gin 是一个使用 Go 语言开发的 Web 框架,它非常轻量级且具有高性能。Gin 提供了快速构建 Web 应用程序所需的基本功能和丰富的中间件支持。 以下是 Gin 框架的一些特点和功能: 快速而高效:…

Sora模型风口,普通人如何抓住-最新AI系统ChatGPT网站源码,AI绘画系统

一、前言说明 PandaAi创作系统是基于ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统&#xff0c;支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美&#xff0c;那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧。已支持…

边缘计算与任务卸载基础知识

目录 边缘计算简介任务卸载简介参考文献 边缘计算简介 边缘计算是指利用靠近数据生成的网络边缘侧的设备&#xff08;如移动设备、基站、边缘服务器、边缘云等&#xff09;的计算能力和存储能力&#xff0c;使得数据和任务能够就近得到处理和执行。 一个典型的边缘计算系统为…

前端按钮动画

效果示例 代码示例 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta http-equiv"X-UA-Compatible" content"IEedge"><meta name"viewport" content"widthdevic…

OSCP靶场--Resourced

OSCP靶场–Resourced 考点(1.rpc枚举 2.crackmapexec密码喷洒&#xff0c;hash喷洒 3.ntds.dit system提取域hash 4.基于资源的约束委派攻击rbcd) 1.nmap扫描 ## ┌──(root㉿kali)-[~/Desktop] └─# nmap -sV -sC -p- 192.168.188.175 --min-rate 2000 Starting Nmap 7.9…

《一篇文章搞懂git(保姆级教学)》

目录 1.版本管理工具概念 2. 版本管理工具介绍 2.1版本管理发展简史(维基百科) 2.1.1 SVN(SubVersion) 2.1.2 Git 3. Git 发展简史 4. Git 的安装 4.1 git 的下载 ​4.2 安装 5. Git 工作流程 5.1 Git 初始化 5.2 git 流程 5.2.1 流程图 5.2.2概念即详解 6.Git …

IO多路复用:提高网络应用性能的利器

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

unity学习(46)——服务器三次注册限制以及数据库化角色信息1--数据流程

1.先找到服务器创建角色信息代码的位置&#xff0c;UserBizImpl.cs中&#xff1a; public PlayerModel create(string accId, string name, int job) {PlayerModel[] playerModelArray this.list(accId);//list是个自建函数&#xff0c;本质通过accId来查询if (playerModelAr…

【高数】常数项级数概念与性质

下面为个人数学笔记&#xff0c;有需要借鉴即可。 一、常数项级数概念 二、常数项级数性质 三、调和级数 完。

c++之旅——第三弹

大家好啊&#xff0c;这里是c之旅第三弹&#xff0c;跟随我的步伐来开始这一篇的学习吧&#xff01; 如果有知识性错误&#xff0c;欢迎各位指正&#xff01;&#xff01;一起加油&#xff01;&#xff01; 创作不易&#xff0c;希望大家多多支持哦&#xff01; 一.命名空间;…

项目设计:基于Qt和百度AI的车牌识别系统(嵌入式ARM)

基于Qt和百度AI智能云实现的智能车牌识别系统&#xff0c;具体可实现为停车场管理系统、智能计费停车系统…等。 1.系统实现思路及框架 1.1实现思路 要实现一个车牌识别系统&#xff0c;有多种方法&#xff0c;例如用opencv图像算法实现&#xff0c;或用第三方算法接口&#x…

输出梯形 C语言

解析&#xff1a;这个输出图形的题就是一个找规律加数学计算&#xff0c;我们发现每行比上一行多两个*&#xff0c;最后一行的*表达式为h&#xff08;h-1&#xff09;*2&#xff0c;即3*h-2&#xff0c;那么每一行就是一个先输出最后一行&#xff0d;当前行*个数个空格&#xf…

pytorch 图像数据集管理

目录 1.数据集的管理说明 2.数据集Dataset类说明 3.图像分类常用的类 ImageFolder 1.数据集的管理说明 pytorch使用Dataset来管理训练和测试数据集&#xff0c;前文说过 torchvision.datasets.MNIST 这些 torchvision.datasets里面的数据集都是继承Dataset而来&#xff0c…

[Redis]——Redis命令手册set、list、sortedset

&#x1f333;List类型常见命令 LPUSH / RPUSH [KEY] [element] …… 向列表左侧或者右侧插入一个或多个元素 LPOP / RPOP [key] 删除左边或者右边第一个元素 LRANGE [key] start end 返回索引start到end的元素&#xff08;索引从0开始&#xff09; BLPOP / BRPOP [key] [等…

【C++】类的默认成员函数(上)

&#x1f525;博客主页&#xff1a; 小羊失眠啦. &#x1f3a5;系列专栏&#xff1a;《C语言》 《数据结构》 《C》 《Linux》 《Cpolar》 ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ 文章目录 一、默认成员函数二、构造函数构造函数的概念及特性 三、析构函数析构函数的特性…